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Stochastic multi-armed bandit

• T -round learning game between the player and m arms

• each arm i ∈ [m] is associated with an unknown fixed reward
distribution Di with unknown mean µi
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Stochastic multi-armed bandit

• for round t = 1, 2, . . .:

• the player selects an arm At ∈ [m]

• then receives a reward Xt,At ∼ DAt

• The goal of the player is to maximize the cumulative expected
reward, or equivalent to minimizing the cumulative expected
regret

E

[
T · µ∗ −

T∑
t=1

Xt,At

]
(1)
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Stochastic multi-armed bandit

To achieve this long-horizon goal:

Exploration V.S. Exploitation

• exploration: try arms that have not been observed enough
times

• exploitation: focus on the arm with the best observed
performance so far

How to balance exploration and exploitation is the key of
algorithms
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upper confidence bound (UCB)

• construct confidence sets for unknown expected rewards

• select arms according to their highest upper confidence bounds

• regret upper bound of order O
(

log T
∆

)
1

1∆ = mini∈[m]

{
µ∗ − µi

}
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Thompson sampling (TS)

• maintain an iteratively updated posterior distribution for
unknown expected rewards
• select arms according to probabilities of being the best one
• was introduced in 19332, but has not been theoretically

proven until recent years3

• regret upper bound of order O
(

log T
∆

)

2William R Thompson. “On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples”. In: Biometrika 25.3/4 (1933), pp. 285–294.

3Shipra Agrawal and Navin Goyal. “Analysis of thompson sampling for the multi-armed bandit problem”. In:
Conference on Learning Theory. 2012, pp. 39–1.
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Combinatorial multi-armed bandit (CMAB)

Advertisement placement

• The agent needs to select several webpages (left) to place the
advertisement, thus the click-through rate is maximized when
faced with several users (right).

• can be formulated by probabilistic maximum coverage (PMC)
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Combinatorial multi-armed bandit (CMAB)

• for round t = 1, 2, . . .:

• the player selects a combination of arms: St satisfying
St ∈ C
• the environment samples the outcome Xt,i for each arm i

• the player observes the feedback Qt = {(i ,Xt,i ) : i ∈ St}
and receives the reward R(St ,Xt)

• The goal of the player is to maximize the cumulative expected
reward

ESt ,Xt

[
T∑
t=1

R(St ,Xt)

]



Background and motivation Setting and algorithm Lower bound Upper bound Conclusion and future work

Assumption

The expected reward of an action S only depends on the S and the
mean vector µ. That is to say, there exists a function r such that
E [Rt ] = EXt∼D [R(St ,Xt)] = r(St , µ).

Assumption

(Lipschitz continuity) There exists a constant B such that for any
action S and mean vectors µ, µ′, the reward of S under µ and µ′

satisfies ∣∣r(S , µ)− r(S , µ′)
∣∣ ≤ B

∑
i∈S

∣∣µi − µ′i ∣∣ .
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Combinatorial multi-armed bandit (CMAB)

CMAB algorithms usually rely on an oracle to solve the
corresponding offline problem.

• when the expected rewards are known, the problem of finding
the optimal solution argmaxS∈C r(S , µ) is called offline
problem

• many offline problems are NP-hard (such as maximum
coverage, influence maximization) and only approximate
algorithms (oracles) are available

• an Oracle is (α, β)-approximate if
r(Oracle(µ′), µ′) ≥ αmaxS∈C r(S , µ′) with probability larger
than β for any given µ′
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Combinatorial multi-armed bandit (CMAB)

With an (α, β)-approximate oracle, the goal is equivalent to
minimize the (α, β)-approximate regret

E

[
T · αβ · r(S∗, µ)−

T∑
t=1

r(St , µ)

]
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Related work: two popular algorithms

upper confidence bound - type (UCB)

• construct confidence sets for unknown expected reward of
each arm

• an oracle helps to choose the action according to arms’
highest upper confidence bounds

• require the reward function to satisfy the monotonicity on µ

Algorithm type allow approximate oracle regret guarantee4

UCB-type yes, ∀α, β ∈ (0, 1] O
(

log T
∆

)
5

4∆ = minS∈C:S /∈αOPT

{
α · r(S∗, µ)− r(S, µ)

}
5Qinshi Wang and Wei Chen. “Improving regret bounds for combinatorial semi-bandits with probabilistically

triggered arms and its applications”. In: Advances in Neural Information Processing Systems. 2017, pp. 1161–1171.
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Related work: two popular algorithms

Thompson sampling - type (TS)

• maintain an iteratively updated posterior distribution for
unknown expected reward of each arm

• an oracle helps to choose the action according to sampled
parameters (θi )i∈[m] from posterior distributions

• relax the monotonicity requirment of UCB-type algorithms

• easier implementation and better empirical performance

Algorithm type allow approximate oracle regret guarantee6

TS-type no, α = β = 1 O
(

log T
∆

)
7

6∆ = minS∈C:S /∈OPT

{
r(S∗, µ)− r(S, µ)

}
7Pierre Perrault et al. “Statistical Efficiency of Thompson Sampling for Combinatorial Semi-Bandits”. In:

Advances in Neural Information Processing Systems. 2020, Siwei Wang and Wei Chen. “Thompson sampling for
combinatorial semi-bandits”. In: International Conference on Machine Learning. PMLR. 2018, pp. 5114–5122.
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Motivation

An example [Theorem 2, Work8] shows the failure of TS to learn
with an approximation oracle.

But this oracle is uncommon and is designed only for a specific
problem instance.

Can the convergence analysis of TS extend beyond the exact oracle
in CMAB ?

8Siwei Wang and Wei Chen. “Thompson sampling for combinatorial semi-bandits”. In: International
Conference on Machine Learning. PMLR. 2018, pp. 5114–5122.
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Setting

We consider TS with common Greedy oracle, which can provide
approximate solutions for many offline problems

• m base arms, denoted by [m] = {1, 2, . . . ,m}
• due to the problem structure, arms are further divided into n

units, a unit of arms must be selected together. Denote the
unit set as U
• for round t = 1, 2, . . .

• the player selects action St ∈ S = {S ⊆ U : |S | = K}
• the environment samples the outcome Xt,i ,∀i ∈ [m]

• the player observes the feedback
Qt = {(i ,Xt,i ) : i ∈ s for some s ∈ St}
• the player receives the reward R(St ,Xt)
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Greedy oracle

Algorithm 1 Greedy algorithm

1: Input: base arm set [m] and mean vector µ = (µi )i∈[m], unit set
U , action size K

2: Initialize: Sg ,0 = ∅
3: for k = 1, 2, · · · ,K do
4: sk = argmaxs∈U\Sg,k−1

r(Sg ,k−1 ∪ {s} , µ)
5: Sg ,k = Sg ,k−1 ∪ {sk}
6: end for
7: Output: Sg = Sg ,K

The above framework with Greedy oracle can cover many CMAB
problems including probabilistic maximum coverage (PMC).

For simplicity, we assume Sg is unique under µ.
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Combinatorial Thompson sampling (CTS)

Algorithm 2 CTS algorithm with Greedy oracle

1: Input: base arm set [m], unit set U , action size K
2: Initialize: ∀i ∈ [m],Gi is the prior distribution
3: for t = 1, 2, · · · do
4: ∀i ∈ [m] : Sample θt,i ∼ Gi .
5: Select action St = Greedy([m], θt ,U ,K ) and receive the ob-

servation Qt

6: //update
7: for (i ,Xt,i ) ∈ Qt do

8: Update the posterior distribution Gi

9: end for
10: end for
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Objective: α-approximate regret?

under UCB:

α · r(S∗, µ)− r(St , µ) ≤ α · r(S∗,U)− r(St , µ)

≤ r(St ,U)− r(St , µ)

≤
∑
i∈St

|Ui − µi | .

under TS:

α · r(S∗, µ)− r(St , µ)

= α · r(S∗, µ)− α · r(S∗, θ) + α · r(S∗, θ)− r(St , µ)

≤ α · (r(S∗, µ)− r(S∗, θ)) + r(St , θ)− r(St , µ)

≤ α
∑
i∈S∗
|θi − µi |+

∑
i∈St

|θi − µi | .

It is first brought up in analyzing UCB-based algorithms and may
not well fit TS-based algorithms.
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Objective

A different objective to minimize the greedy regret

Rg (T ) = E

[
T∑
t=1

max {r(Sg , µ)− r(St , µ), 0}

]
. (2)

Remark
When Greedy can provide α-approximate solutions, the upper
bound for the greedy regret also implies the upper bound for the
α-approximate regret since r(Sg , µ) ≥ α · r(S∗, µ).
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Lower bound: define gaps to quantify the hardness

For any unit s ∈ U and index k ∈ [K ] such that s /∈ Sg ,k , define
the marginal reward gap

∆s,k = r(Sg ,k , µ)− r(Sg ,k−1 ∪ {s} , µ)

as the reward difference between Sg ,k and Sg ,k−1 ∪ {s}. According
to the Greedy algorithm, we have ∆s,k > 0 for any k such that
s /∈ Sg ,k . And for any action S ∈ S, define
∆S = max {r(Sg , µ)− r(S , µ), 0} as the reward difference from
the Greedy’s solution Sg . Let

∆min
s = min

S∈S:s∈S
∆S , ∆max

s = max
S∈S:s∈S

∆S

be the minimum and maximum reward gap of actions containing
unit s, respectively.
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Lower Bound: problem instance

Figure: The underlying graph of the PMC instance used to derive the
hardness analysis and the corresponding rewards of actions.

Sg = {u2, u1} with sg ,1 = u2, sg ,2 = u1, and r(Sg , µ) = 0.892,
while the optimal action is {u1, u4}
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Lower bound: intuition and result

Using the CTS algorithm with Gaussian priors and Greedy oracle to
solve the CMAB problem shown in Figure 1, when T is sufficiently
large, we have

E [NT+1,s ] = Ω

(
logT

∆2
s,1

)
, (3)

for any s 6= sg ,1 = u2, where NT+1,s =
∑T

t=1 1{s ∈ St} is the
number of rounds when s is contained in the selected action set St .
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Lower bound: intuition and result

∆u3,1 = ∆, ∆u3,2 = 0.012 + 0.7∆ , ∆min
u3

= 0.52∆ + 0.008 .

Theorem
(Lower bound) When T is sufficiently large, the cumulative greedy
regret satisfies

Rg (T ) = Ω

(
logT

∆2
u3,1

·∆min
u3

)
= Ω

(
logT

∆2

)
. (4)
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Upper bound

Theorem
(Upper bound) The cumulative greedy regret of CTS with
Gaussian and Beta priors can be upper bounded by

Rg (T ) =O

 ∑
s 6=sg,1

max
k:s /∈Sg,k

B2 |s|2 ∆max
s logT

∆2
s,k

 , (5)

where B is the coefficient of the Lipschitz continuity condition,
|∪Sg | is the number of base arms that belong to the units
contained in Sg .
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Upper bound: Comparisons with TS for MAB

• K = 1, B = 1 and |s| = 1 for any s

• Greedy can provide exact optimal solutions thus

Rg (T ) = R(T ) = E
[∑T

t=1(µ∗ − µAt )
]

• ∆max
s = ∆s,1 for any s

• Our greedy regret upper bound is

Rg (T ) = O

 ∑
s 6=sg,1

logT

∆s,1

 ,

which recovers the main order of the regret of TS for MAB9.

9Shipra Agrawal and Navin Goyal. “Further optimal regret bounds for thompson sampling”. In: Proceedings of
the 16th International Conference on Artificial Intelligence and Statistics. 2013, pp. 99–107.
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Upper bound: proof sketch

Sg = {sg ,1, sg ,2, ... sg ,K}
St = {st,1, → st,2, ... st,K}

st,1 = sg,1? → st,2 = sg,2? | st,1 = sg,1 st,K = sg,K ? | St,K−1 = Sg,K−1

∀s 6= sg,1 : log T

∆2
s,1

∀s /∈ Sg,2 : log T

∆2
s,2

∀s /∈ Sg,K : log T

∆2
s,K

Above all, each unit s needs to be explored

O

(
max

k:s /∈Sg,k

logT

∆2
s,k

)



Background and motivation Setting and algorithm Lower bound Upper bound Conclusion and future work

Conclusion

• The first theoretical results for TS-type algorithm to solve
CMAB problems with (approximate) greedy oracle.

• Our results break the misconception that CTS cannot be used
with approximation oracles with the failure example in work10.

10Siwei Wang and Wei Chen. “Thompson sampling for combinatorial semi-bandits”. In: International
Conference on Machine Learning. PMLR. 2018, pp. 5114–5122.
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Future work

An interesting future direction is to extend the current CMAB
framework to the case with probabilistically triggered arms

(CMAB-T).

• the CMAB-T framework models more applications

• TS samples candidate parameters to escape the computation
of complicated optimization problems which may be faced in
UCB11

• new proof techniques are required

11Shuai Li et al. “Online Influence Maximization under Linear Threshold Model”. In: Advances in Neural
Information Processing Systems. 2020.
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Thanks!
Questions?
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