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Background and Motivation
• Combinatorial multi-armed bandits (CMAB)

– A sequential decision-making problem
– The agent selects a combination of base arms as an action to play in each round, and all

outcomes of these selected arms are then revealed (semi-bandit feedback).
– An offline oracle helps to find the solution in each round with estimated parameters as input.
– Many applications: probabilistic maximum coverage (PMC), online influence maximization

(OIM), multiple-play MAB (MP-MAB), minimum spanning tree (MST)
• Thompson Sampling

– It was introduced very earlier in the 1930s.
– Compared with UCB-type algorithms, TS-type algorithms do not require the reward func-

tion to satisfy the monotonicity on the mean vector of base arms and also benefit from other
advantages of easier implementation and better practical performances.

– Previous TS-based analyses all require an exact oracle to solve CMAB problems.
•However, exact oracles are usually not feasible in CMAB problems since many offline com-

binatorial optimization problems are NP-hard and only approximation oracles are available.
With an example [WC18] illustrating the non-convergent regret of TS with an artificial approx-
imation oracle designed for a specific problem instance, whether TS can work well in CMAB
problems with common approximation oracles is still an open problem.
•Greedy oracle is common for offline combinatorial optimization problems.

– It can provide approximate solutions for offline problems of PMC and OIM, and exact opti-
mal solutions for offline problems of MP-MAB and MST.

– In general, as long as the expected reward in a problem satisfies the monotonicity and sub-
modularity on the action set, the greedy algorithm serves as an offline oracle to provide an
approximate solution [NWF78].

Setting
• Problem Formulation

–m base arms and the arm set is denoted by [m] = {1, 2, . . . ,m}. Each arm i ∈ [m] is
associated with a distribution Di on [0, 1]

– The base arm set [m] is further divided into n units, with each unit containing several base
arms and a unit of arms will be selected together.

– Let U be the collection of all units and |s| be the number of base arms contained in unit s for
any s ∈ U .

• The online problem, in each round t:
– The learning agent selects an action St ∈ S = {S ⊆ U : |S| = K} to play. S is the set of

all candidate actions containing K units and ∪S = {i ∈ s for some s ∈ S} is the set of base
arms that belong to units contained in S.

– The environment then draws a random output of all base arms Xt = (Xt,1, Xt,2, . . . , Xt,m)
from the distributionD = D1×D2× . . .×Dm. For any t, Xt,i is independent and identically
distributed on Di with expectation µi.

– The agent can observe feedback Qt =
{

(i,Xt,i) | i ∈ ∪St
}

, namely the output of all base
arms in units contained in St.

– The agent finally obtains a corresponding reward Rt = R(St, Xt) in this round, which is a
function of action St and output Xt and satisfies the following widely-studied assumptions.
Assumption 1. The expected reward of an action S only depends on S and the mean vector
µ. That is to say, there exists a function r such that E [Rt] = EXt∼D[R(St, Xt)] = r(St, µ).
Assumption 2. (Lipschitz continuity) There exists a constant B such that for any action S
and mean vectors µ, µ′, the reward of S under µ and µ′ satisfies∣∣r(S, µ)− r(S, µ′)

∣∣ ≤ B
∑
i∈∪S

∣∣µi − µ′i∣∣ . (1)

• The offline problem, Greedy Algorithm
1. Input: base arm set [m] and mean vector µ = (µi)i∈[m], unit set U , action size K
2. Initialize: Sg = ∅
3. for k = 1, 2, · · · , K
4. sk = argmaxs∈U\Sgr(Sg ∪ {s} , µ)

5. Sg = Sg ∪ {sk}
6. Output: Output: Sg
•Objective

– To simplify, we first assume the Greedy’s solution Sg(µ), abbreviated as Sg, is unique, or
equivalently the optimal unit in each step k is unique.

– The objective of the learning agent is to minimize the cumulative expected regret with respect
to the Greedy’s solution Sg, which we call cumulative greedy regret defined by

Rg(T ) = E

 T∑
t=1

max
{
r(Sg, µ)− r(St, µ), 0

} , (2)

where the expectation is taken from the randomness in observations and the online algorithm.
Remark. When Greedy is α-approximate, the upper bound for greedy regret also implies the
upper bound for the α-approximate regret which is widely adopted in previous CMAB works
based on UCB-type algorithms [WC17]. The α-approximate regret is weaker than greedy re-
gret as it relaxes the requirements for online algorithms and only needs them to return solutions
satisfying the relaxed approximation ratio.

Combinatorial Thompson sampling (CTS) algorithm
CTS algorithm with Beta priors and Greedy oracle
1. Input: base arm set [m], unit set U , action size K
2. Initialize: ∀i ∈ [m], ai = bi = 1

3. for t = 1, 2, 3, . . .

4. ∀i ∈ [m] : Sample θt,i ∼Beta(ai, bi). Denote θt = (θt,1, θt,2, · · · , θt,m)

5. Select action St = Greedy([m], θt,U , K) and receive the observation Qt
6. //Update
7. for (i,Xt,i) ∈ Qt
8. With probability Xt,i, Yt,i = 1; with probability 1−Xt,i, Yt,i = 0

9. Update ai = ai + Yt,i, bi = bi + (1− Yt,i)

Main Results
•Definitions

– Sg =
{
sg,1, sg,2, . . . , sg,K

}
, where sg,k is the k-th selected unit by Greedy.

– Sg,k =
{
sg,1, sg,2, . . . , sg,k

}
is the sequence containing the first k units for any k ∈ [K].

– Similarly, let St =
{
st,1, st,2, . . . , st,K

}
and St,k =

{
st,1, st,2, . . . , st,k

}
.

– (Gaps) For any unit s ∈ U and index k ∈ [K] such that s /∈ Sg,k−1, define the marginal
reward gap

∆s,k = r(Sg,k, µ)− r(Sg,k−1 ∪ {s} , µ)

as the reward difference between Sg,k and Sg,k−1 ∪ {s}. According to the Greedy algo-
rithm, we have ∆s,k > 0 for any k such that s /∈ Sg,k. And for any action S ∈ S , define
∆S = max

{
r(Sg, µ)− r(S, µ), 0

}
as the reward difference from the Greedy’s solution Sg.

Let

∆min
s = min

S∈S :s∈S
∆S , ∆max

s = max
S∈S :s∈S

∆S

be the minimum and maximum reward gap of actions containing unit s, respectively. Denote
∆max = maxS∈S ∆S as the maximum reward gap over all suboptimal actions.
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Figure 1: The underlying graph of the PMC
instance used to derive the lower bound.

Action Expected Reward Action Expected Reward

{u1} 0.49 {u1, u2} 0.892

{u2} 0.5 {u1, u3} 0.843−∆

{u3} 0.5−∆ {u1, u4} 0.97

{u4} 0.48 {u2, u3} 0.88− 0.7∆

{u3, u4} 0.884− 0.52∆ {u2, u4} 0.836

Table 1: The expected rewards of actions in the problem instance
shown in Figure 1.

Theorem 1. (Lower bound) Using the CTS algorithm with Gaussian priors and Greedy oracle to
solve the CMAB problem shown in Figure 1, when T is sufficiently large, we have

E
[
NT+1,s

]
= Ω

(
log T

∆2
s,1

)
, (3)

for any s 6= sg,1 = u2, where NT+1,s =
∑T
t=1 1{s ∈ St} is the number of rounds when s is

contained in the selected action set St.
Further, the cumulative greedy regret satisfies

Rg(T ) = Ω

(
log T

∆2
u3,1

)
= Ω

(
log T

∆2

)
. (4)

Theorem 2. (Upper bound) The cumulative greedy regret of CTS Algorithm with Greedy oracle
and Beta ( or Gaussian) priors can be upper bounded by

Rg(T ) ≤ O

∑
s 6=sg,1

max
k:s/∈Sg,k

B2 |s|2 ∆max
s log T(

∆s,k − 2B
∣∣∪Sg∣∣ ε)2

+
∑
k∈[K]

C

ε2

(
C ′

ε4

)|sg,k|
∆max

 (5)

for any ε such that ∀s 6= sg,1 and k satisfying s /∈ Sg,k, ∆s,k > 2B
∣∣∪Sg∣∣ ε, where B is the

coefficient of the Lipschitz continuity condition,
∣∣∪Sg∣∣ is the number of base arms that belong to

the units contained in Sg, C and C ′ are two universal constants.

Conclusion and Future Work
•We give the first theoretical result for TS-type algorithm to solve CMAB problems with (ap-

proximate) greedy oracle.

•Our result breaks the misconception that CTS cannot be used with approximation oracles.

•An interesting future direction is to extend the current CMAB framework to the case with prob-
abilistically triggered arms (CMAB-T).
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