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What are bandits?

To accumulate as many rewards, which arm would you choose next?

Exploitation V.S. Exploration

• Lattimore, Tor, and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020



Interactive framework

• For 𝑡 = 1,2, …
• The agent selects arm 𝐼! ∈ 𝑉
• The environment produces reward 𝑟! = (𝑟! 1 , 𝑟! 2 ,… , 𝑟!(𝐾)) ∈ [0,1]"

• The agent observes 𝑗, 𝑟! 𝑗 for each arm 𝑗 ∈ 𝑁#$!(𝐼!)
• The agent receives reward 𝑟! 𝐼!

• Feedback graph 𝐺 = 𝑉, 𝐸
• Arm set 𝑉 = 1,2, … , 𝐾
• Edge set 𝐸 = { 𝑖, 𝑗 }

• Alon, Noga, et al. “Online learning with feedback graphs: Beyond bandits.” Conference on Learning Theory. PMLR, 2015.



Objectives for two environments

• Stochastic setting
• 𝑟! 𝑖 is drawn independently from a fixed distribution
• 𝔼[𝑟! 𝑖 ] = 𝜇%
• Aim to minimize the regret

𝑅𝑒𝑔 𝑇 = max%∈' ∑!()* (𝜇%−𝜇+!): = ∑!()* (𝜇%∗−𝜇+!):= ∑!()* ∆+!

• Adversarial setting
• 𝑟! 𝑖 can be chosen arbitrarily by an adversary

𝑅𝑒𝑔 𝑇 = max%∈'C
!()

*
𝑟!(𝑖) −C

!()

*
𝑟!(𝐼!)



Observability

• The agent cannot determine which arm is 
optimal will suffer 𝑂 𝑇 regret

• We consider observable graphs, i.e., 
𝑁%, 𝑖 ≠ ∅, ∀𝑖

• Strongly observable:

• Weakly observable:



Previous results

Stochastic Adversarial

Wu et al. (2015) Θ
log 𝑇
∆-

Alon et al. (2015) Θ 𝑇-//

Chen et al. (2021) Θ 𝑇-//

• Can we achieve best-of-both-worlds guarantees?
• Erez et al. (2021) also try to solve this problem but only for undirected graph with self-

loops.  



• In the stochastic setting
• Sample dominating set (arm 1) until all sub-optimal arms are 

identified and then focus on the optimal one
• Each sub-optimal arm 𝑖 needs to be observed for 𝑂(log 𝑇/∆%-)

times
• 𝑂(|𝐷| log 𝑇/∆-)

• However, it would fail in the adversarial setting: 𝑂 𝑇
• The optimal arm changes with the horizon

A simple idea of explore-then-commit (ETC)



“Switch” algorithm

• For t=1,2,3,…
• Determine 𝑝!(𝑖) for each arm 𝑖 ∈ 𝑉
• Sample 𝐼!~𝑝! and observe 𝑗, 𝑟! 𝑗 for each arm 𝑗 ∈ 𝑁#$!(𝐼!)

• Detect whether the environment is adversarial
• If true, run Exp3.G (Alon et al. 2015)

Only exploration would fail for rounds 
before switch in adversarial setting



Add exploitation to bound in adversarial

• For t=1,2,3,…
• For each arm 𝑖 ∈ 𝑉

• 𝑝!,# 𝑖 = $
|#|
𝕀 𝑖 ∈ 𝐷

• 𝑝!,& 𝑖 = $
|&|
𝕀{𝑖 ∈ 𝐴}

• 𝑝! 𝑖 = 𝛾𝑝!,#(𝑖)+(1 − 𝛾)𝑝!,&(𝑖)
• Sample 𝐼!~𝑝! and observe 𝑗, 𝑟! 𝑗 for each arm 𝑗 ∈ 𝑁#$!(𝐼!)

• Detect whether the environment is adversarial
• If true, run Exp3.G (Alon et al. 2015)



Optimize in the stochastic setting

• For t=1,2,3,…
• For each arm 𝑖 ∈ 𝑉

• 𝑝#,% 𝑖 = &
|%|
𝕀{𝑖 ∈ 𝐴}

• 𝑝#,( 𝑖 = &
|(!|

𝕀{𝑖 ∈ 𝐷%}

• 𝑝# 𝑖 = 𝛾𝑝#,((𝑖)+(1 − 𝛾)𝑝#,%(𝑖)
• Sample 𝐼!~𝑝! and observe 𝑗, 𝑟! 𝑗 for each arm 𝑗 ∈ 𝑁"#!(𝐼!)

• Detect whether an arm in 𝐴 is sub-optimal
• If true, delete this arm from A

• Detect whether the environment is adv:
• If true, run Exp3.G (Alon et al. 2015)



Guarantee observations to detect adversarial

• For t=1,2,3,…
• For each arm 𝑖 ∈ 𝑉

• 𝑝#,% 𝑖 = &
|%|
𝕀{𝑖 ∈ 𝐴}

• 𝑝#,( 𝑖 = &
(!

𝕀 𝑖 ∈ 𝐷% 1 − ∑)∈(\(! 𝑝(
,-. 𝑗

/"
#

#
+ 𝑝(,-. 𝑖

/$
#

#
𝕀 𝑖 ∈ 𝐷\𝐷%

• 𝑝# 𝑖 = 𝛾𝑝#,((𝑖)+(1 − 𝛾)𝑝#,%(𝑖)
• Sample 𝐼!~𝑝! and observe 𝑗, 𝑟! 𝑗 for each arm 𝑗 ∈ 𝑁"#!(𝐼!)

• Detect whether an arm in 𝐴 is sub-optimal
• If true, delete this arm from A

• Detect whether the environment is adversarial
• If true, run Exp3.G (Alon et al. 2015)



Concentrations for detection

• Construct unbiased estimator for 𝑟0(𝑖)
• 𝑟̃! 𝑖 = 𝑟!(𝑖)

𝕀 %∈101! +!
∑
2∈345(4)

3!(5)

• The averaged estimated reward for 𝑖 at 𝑡 is
• S𝐻! 𝑖 = )

!
∑7()! 𝑟̃7 𝑖

• S𝐻! 𝑖 − 𝜇% ≤ radius8 𝑖 = 𝑂( )
!9!
) in stochastic setting

• S𝐻! 𝑖 −
)
!
∑7()! 𝑟7 𝑖 ≤ radius8(𝑖) = 𝑂( )

!9!
) in adversarial setting



Detect sub-optimal arms

• For t=1,2,3,…
• For each arm 𝑖 ∈ 𝑉

• 𝑝#,% 𝑖 = &
|%|
𝕀{𝑖 ∈ 𝐴}

• 𝑝#,( 𝑖 = &
(!

𝕀 𝑖 ∈ 𝐷% 1 − ∑)∈(\(! 𝑝(
,-. 𝑗

/"
#

#
+ 𝑝(,-. 𝑖

/$
#

#
𝕀 𝑖 ∈ 𝐷\𝐷%

• 𝑝# 𝑖 = 𝛾𝑝#,((𝑖)+(1 − 𝛾)𝑝#,%(𝑖)
• Sample 𝐼!~𝑝! and observe 𝑗, 𝑟! 𝑗 for each arm 𝑗 ∈ 𝑁"#!(𝐼!)

• If ∃𝑖 such that /𝐻! 𝑗 − radius$ 𝑗 > /𝐻! 𝑖 + radius$ 𝑖 where 𝑗 ∈ argmax%!∈' /𝐻! 𝑗(
• Delete arm 𝑖 from 𝐴

• Detect whether the environment is adversarial
• If true, run Exp3.G (Alon et al. 2015)



Detect adversarial

• For t=1,2,3,…
• For each arm 𝑖 ∈ 𝑉

• 𝑝#,% 𝑖 = &
|%|
𝕀{𝑖 ∈ 𝐴}

• 𝑝#,( 𝑖 = &
(!

𝕀 𝑖 ∈ 𝐷% 1 − ∑)∈(\(! 𝑝(
,-. 𝑗

/"
#

#
+ 𝑝(,-. 𝑖

/$
#

#
𝕀 𝑖 ∈ 𝐷\𝐷%

• 𝑝# 𝑖 = 𝛾𝑝#,((𝑖)+(1 − 𝛾)𝑝#,%(𝑖)
• Sample 𝐼!~𝑝! and observe 𝑗, 𝑟! 𝑗 for each arm 𝑗 ∈ 𝑁"#!(𝐼!)

• If ∃𝑖 such that /𝐻! 𝑗 − radius$ 𝑗 > /𝐻! 𝑖 + radius$ 𝑖 where 𝑗 ∈ argmax%!∈' /𝐻! 𝑗(
• Delete arm 𝑖 from 𝐴

• If ∃𝑖 ∉ 𝐴 such that /𝐻! 𝑗 − radius$ 𝑗 < /𝐻! 𝑖 + radius$ 𝑖 where 𝑗 ∈ argmax%!∈' /𝐻! 𝑗(
• A previous deleted arm becomes better-> adversarial
• If true, run Exp3.G (Alon et al. 2015)



Regret analysis in adversarial setting

𝑅𝑒𝑔 𝑇 = max%∈'C
!()

*
(𝑟!(𝑖) − 𝑟!(𝐼!))

≤ max%∈' ∑!(): (𝑟!(𝑖) − 𝑟!(𝐼!)) + max%∈' ∑!(:;)* (𝑟!(𝑖) − 𝑟!(𝐼!))

• During first 𝜏 rounds: Let 𝑖∗ ∈ argmax4 ∑5678 𝑟5(𝑖)
• 𝑖∗ ∈ 𝐴*
• 𝐻* 𝑖∗ −𝐻* 𝑖 < /𝐻* 𝑖∗ − /𝐻* 𝑖 + radius+(𝑖∗)+ radius+(𝑖) < 𝑂(radius+(𝑖))
• Choosing 𝛾 = 𝑂(𝑡,-//) to get regret 𝑂(𝜏0//)

• For the following rounds: 𝑂(𝑇9/;)



Regret analysis in stochastic setting

𝑅𝑒𝑔 𝑇 = H
1∈2
∆1 𝑁1(𝑇)

≤ ∑1∈2 ∆1 𝜏1 + ∑!3-
*"
#
𝛾! + ∑!3*"#

4 𝛾!
*"
#

!

• 𝜏4 = 𝑂 <=> ?
∆5
6

;/9
; 𝜏4A = maxB∈C789 4 𝜏B; 

• ∑567
85
:
𝛾5 = (𝜏4A)9/; = maxB∈C789 4 log 𝑇 /∆B

9

• 𝜏4A ∑5685:
? D9

5
= 𝑂 𝜏4A = 5𝑂 <=> ?

∆5
6

;/9

• Detection for adversarial setting never satisfies



Conclusion (general feedback graph)
Stochastic Adversarial

Wu et al. (2015) 𝑂 |𝐷|log 𝑇 /∆-

Alon et al. (2015) 𝑂 ( 𝐷 log𝐾))//𝑇-//

Chen et al. (2021) 𝑂 (𝛿 log𝐾))//𝑇-//

Ours 𝑂 |𝐷|-(log 𝑇/∆-)//- 𝑂 ( 𝐷 𝐾-))//𝑇-// log 𝑇



Future work
Stochastic Adversarial

Wu et al. (2015) 𝑂 |𝐷|log 𝑇 /∆-

Alon et al. (2015) 𝑂 ( 𝐷 log𝐾))//𝑇-//

Chen et al. (2021) 𝑂 (𝛿 log𝐾))//𝑇-//

Ours 𝑂 |𝐷|-(log 𝑇/∆-)//- 𝑂 ( 𝐷 𝐾-))//𝑇-// log 𝑇

Ito et al. (2022) 𝑂 |𝐷|log-𝑇/∆- 𝑂 𝐷)//𝑇-//log<//𝑇

Future?



Future work (strongly observable graph)
Stochastic Adversarial

Wu et al. (2015) 𝑂 𝛼log 𝑇 /∆
𝛼 is the independence number

Alon et al. (2015) 𝑂̂ 𝛼𝑇

Erez et al.,(2021)
undirected graph with 
self-loops

𝑂 𝜃log<𝑇/∆
𝜃 ≤ 𝛼 is the clique covering number 

𝑂̂ 𝜃𝑇

Ito et al. (2022) 𝑂 𝛼log/𝑇/∆ 𝑂̂ 𝛼𝑇

Rouyer et al. (2022)
with self-loops

𝑂 𝛼log-𝑇/∆ 𝑂̂ 𝛼𝑇

Future?
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