

Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback (ICML 2022)

Fang Kong, Yichi Zhou, Shuai Li

What are bandits?

Time	1	2	3	4	5	6	7	8	9	10	11	12
Left arm	\$1	\$0			\$1	\$1	\$0					
Right arm			\$1	\$0								

To accumulate as many rewards, which arm would you choose next?

Exploitation V.S. Exploration

• Lattimore, Tor, and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020

Interactive framework 4 4 3 4 4 3 3 4 3 4

2

5

- For t = 1, 2, ...
 - The agent selects arm $I_t \in V$
 - The environment produces reward $r_t = (r_t(1), r_t(2), \dots, r_t(K)) \in [0, 1]^K$
 - The agent observes $(j, r_t(j))$ for each arm $j \in N^{out}(I_t)$
 - The agent receives reward $r_t(I_t)$
- Feedback graph G = (V, E)
 - Arm set $V = \{1, 2, ..., K\}$
 - Edge set $E = \{(i, j)\}$

Objectives for two environments

- Stochastic setting
 - $r_t(i)$ is drawn independently from a fixed distribution
 - $\mathbb{E}[r_t(i)] = \mu_i$
 - Aim to minimize the regret

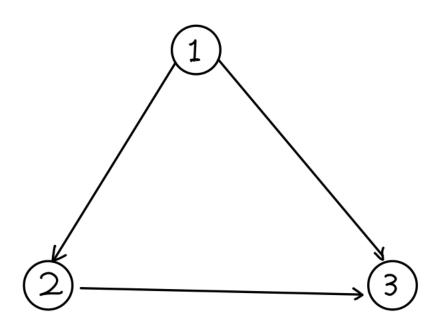
$$Reg(T) = \max_{i \in V} \sum_{t=1}^{T} (\mu_i - \mu_{I_t}) := \sum_{t=1}^{T} (\mu_{i^*} - \mu_{I_t}) := \sum_{t=1}^{T} \Delta_{I_t}$$

Adversarial setting

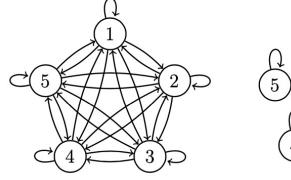
•
$$r_t(i)$$
 can be chosen arbitrarily by an adversary

$$Reg(T) = \max_{i \in V} \sum_{t=1}^{T} r_t(i) - \sum_{t=1}^{T} r_t(l_t)$$

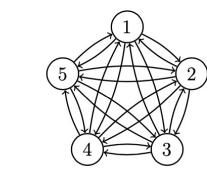
Observability



• Strongly observable:



2



5

 $\begin{pmatrix} 0\\ 2 \end{pmatrix}$

 $\overline{3}$

(2)

3

(5)

• Weakly observable:

- The agent cannot determine which arm is optimal will suffer O(T) regret
- We consider observable graphs, i.e., $N^{in}(i) \neq \emptyset, \forall i$

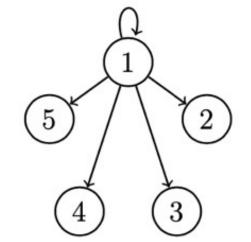
Previous results

	Stochastic	Adversarial
Wu et al. (2015)	$\Theta\left(\frac{\log T}{\Delta^2}\right)$	
Alon et al. (2015)		$\Theta(T^{2/3})$
Chen et al. (2021)		$\Theta(T^{2/3})$

- Can we achieve best-of-both-worlds guarantees?
 - Erez et al. (2021) also try to solve this problem but only for undirected graph with selfloops.

A simple idea of explore-then-commit (ETC)

- In the stochastic setting
 - Sample dominating set (arm 1) until all sub-optimal arms are identified and then focus on the optimal one
 - Each sub-optimal arm *i* needs to be observed for $O(\log T/\Delta_i^2)$ times
 - $O(|D|\log T/\Delta^2)$
- However, it would fail in the adversarial setting: O(T)
 - The optimal arm changes with the horizon



"Switch" algorithm

Only exploration would fail for rounds

- For t=1,2,3,... before switch in adversarial setting
 Determine p_t(i) for each arm i ∈ V
 Sample I_t~p_t and observe (j, r_t(j)) for each arm j ∈ N^{out}(I_t)
 - Detect whether the environment is adversarial
 - If true, run Exp3.G (Alon et al. 2015)

Add exploitation to bound in adversarial

- For t=1,2,3,...
 - For each arm $i \in V$
 - $p_{t,D}(i) = \frac{1}{|D|} \mathbb{I}\{i \in D\}$
 - $p_{t,A}(i) = \frac{1}{|A|} \mathbb{I}\{i \in A\}$
 - $p_t(i) = \gamma p_{t,D}(i) + (1 \gamma) p_{t,A}(i)$
 - Sample $I_t \sim p_t$ and observe $(j, r_t(j))$ for each arm $j \in N^{out}(I_t)$
 - Detect whether the environment is adversarial
 - If true, run Exp3.G (Alon et al. 2015)

Optimize in the stochastic setting

- For t=1,2,3,...
 - For each arm $i \in V$
 - $p_{t,A}(i) = \frac{1}{|A|} \mathbb{I}\{i \in A\}$
 - $p_{t,D}(i) = \frac{1}{|D_A|} \mathbb{I}\{i \in D_A\}$
 - $p_t(i) = \gamma p_{t,D}(i) + (1 \gamma) p_{t,A}(i)$
 - Sample $I_t \sim p_t$ and observe $(j, r_t(j))$ for each arm $j \in N^{out}(I_t)$
 - Detect whether an arm in A is sub-optimal
 - If true, delete this arm from A
 - Detect whether the environment is adv:
 - If true, run Exp3.G (Alon et al. 2015)

Guarantee observations to detect adversarial

- For t=1,2,3,...
 - For each arm $i \in V$
 - $p_{t,A}(i) = \frac{1}{|A|} \mathbb{I}\{i \in A\}$
 - $p_{t,D}(i) = \frac{1}{|D_A|} \mathbb{I}\{i \in D_A\} \left(1 \sum_{j \in D \setminus D_A} p_D^{\text{old}}(j) \frac{\tau_j^D}{t}\right) + p_D^{\text{old}}(i) \frac{\tau_i^D}{t} \mathbb{I}\{i \in D \setminus D_A\}$

•
$$p_t(i) = \gamma p_{t,D}(i) + (1 - \gamma) p_{t,A}(i)$$

- Sample $I_t \sim p_t$ and observe $(j, r_t(j))$ for each arm $j \in N^{out}(I_t)$
- Detect whether an arm in A is sub-optimal
 - If true, delete this arm from A
- Detect whether the environment is adversarial
 - If true, run Exp3.G (Alon et al. 2015)

Concentrations for detection

• Construct unbiased estimator for $r_t(i)$

•
$$\tilde{r}_t(i) = r_t(i) \frac{\mathbb{I}\{i \in N^{out}(I_t)\}}{\sum_{j \in N^{in}(i)} p_t(j)}$$

- The averaged estimated reward for *i* at *t* is
- $\widetilde{H}_t(i) = \frac{1}{t} \sum_{s=1}^t \widetilde{r}_s(i)$
- $|\tilde{H}_t(i) \mu_i| \leq \operatorname{radius}_t(i) = O(\sqrt{\frac{1}{t\gamma_t}})$ in stochastic setting

•
$$\left| \widetilde{H}_t(i) - \frac{1}{t} \sum_{s=1}^t r_s(i) \right| \le \operatorname{radius}_t(i) = O(\sqrt{\frac{1}{t\gamma_t}})$$
 in adversarial setting

Detect sub-optimal arms

- For t=1,2,3,...
 - For each arm $i \in V$
 - $p_{t,A}(i) = \frac{1}{|A|} \mathbb{I}\{i \in A\}$
 - $p_{t,D}(i) = \frac{1}{|D_A|} \mathbb{I}\{i \in D_A\} \left(1 \sum_{j \in D \setminus D_A} p_D^{\text{old}}(j) \frac{\tau_j^D}{t}\right) + p_D^{\text{old}}(i) \frac{\tau_i^D}{t} \mathbb{I}\{i \in D \setminus D_A\}$

•
$$p_t(i) = \gamma p_{t,D}(i) + (1 - \gamma) p_{t,A}(i)$$

- Sample $I_t \sim p_t$ and observe $(j, r_t(j))$ for each arm $j \in N^{out}(I_t)$
- If $\exists i$ such that $\widetilde{H}_t(j) \operatorname{radius}_t(j) > \widetilde{H}_t(i) + \operatorname{radius}_t(i)$ where $j \in \operatorname{argmax}_{j' \in A} \widetilde{H}_t(j')$
 - Delete arm *i* from *A*
- Detect whether the environment is adversarial
 - If true, run Exp3.G (Alon et al. 2015)

Detect adversarial

- For t=1,2,3,...
 - For each arm $i \in V$
 - $p_{t,A}(i) = \frac{1}{|A|} \mathbb{I}\{i \in A\}$
 - $p_{t,D}(i) = \frac{1}{|D_A|} \mathbb{I}\{i \in D_A\} \left(1 \sum_{j \in D \setminus D_A} p_D^{\text{old}}(j) \frac{\tau_j^D}{t}\right) + p_D^{\text{old}}(i) \frac{\tau_i^D}{t} \mathbb{I}\{i \in D \setminus D_A\}$

•
$$p_t(i) = \gamma p_{t,D}(i) + (1 - \gamma) p_{t,A}(i)$$

- Sample $I_t \sim p_t$ and observe $(j, r_t(j))$ for each arm $j \in N^{out}(I_t)$
- If $\exists i \text{ such that } \widetilde{H}_t(j) \operatorname{radius}_t(j) > \widetilde{H}_t(i) + \operatorname{radius}_t(i) \text{ where } j \in \operatorname{argmax}_{j' \in A} \widetilde{H}_t(j')$
 - Delete arm *i* from *A*
- If $\exists i \notin A$ such that $\widetilde{H}_t(j) \operatorname{radius}_t(j) < \widetilde{H}_t(i) + \operatorname{radius}_t(i)$ where $j \in \operatorname{argmax}_{j' \in A} \widetilde{H}_t(j')$
 - A previous deleted arm becomes better-> adversarial
 - If true, run Exp3.G (Alon et al. 2015)

Regret analysis in adversarial setting

$$\begin{aligned} Reg(T) &= \max_{i \in V} \sum_{t=1}^{T} (r_t(i) - r_t(I_t)) \\ &\leq \max_{i \in V} \sum_{t=1}^{T} (r_t(i) - r_t(I_t)) + \max_{i \in V} \sum_{t=\tau+1}^{T} (r_t(i) - r_t(I_t)) \end{aligned}$$

- During first τ rounds: Let $i^* \in \operatorname{argmax}_i \sum_{t=1}^{\tau} r_t(i)$
 - $i^* \in A_{\tau}$
 - $H_{\tau}(i^*) H_{\tau}(i) < \widetilde{H}_{\tau}(i^*) \widetilde{H}_{\tau}(i) + \operatorname{radius}_{\tau}(i^*) + \operatorname{radius}_{\tau}(i) < O(\operatorname{radius}_{\tau}(i))$
 - Choosing $\gamma = O(t^{-1/3})$ to get regret $O(\tau^{2/3})$
- For the following rounds: $O(T^{2/3})$

Regret analysis in stochastic setting

• Detection for adversarial setting never satisfies

$$Reg(T) = \sum_{i \in V} \Delta_i N_i (T) \xrightarrow{\bullet p_{t,A}(i) = \frac{1}{|A|} \mathbb{I}\{i \in A\};} \underbrace{\bullet p_{t,D}(i) = \frac{1}{|D_A|} \mathbb{I}\{i \in D_A\} \left(1 - \sum_{j \in D \setminus D_A} p_D^{\text{old}}(j) \frac{\tau_j^D}{t}\right) + p_D^{\text{old}}(i) \frac{\tau_i^D}{t} \mathbb{I}\{i \in D \setminus D_A\}}{\bullet p_t(i) = \gamma p_{t,D}(i) + (1 - \gamma) p_{t,A}(i)} \xrightarrow{\bullet p_t(i) = \gamma p_{t,D}(i) + (1 - \gamma) p_{t,A}(i)}$$

•
$$\tau_i = O\left(\frac{\log T}{\Delta_i^2}\right)^{3/2}; \ \tau_i^D = \max_{j \in N^{out}(i)} \tau_j;$$

• $\sum_{t=1}^{\tau_i^D} \gamma_t = (\tau_i^D)^{2/3} = \max_{j \in N^{out}(i)} \log T / \Delta_j^2$
• $\tau_i^D \sum_{t=\tau_i^D}^T \frac{\gamma_t}{t} = O\left(\tau_i^D\right) = \tilde{O}\left(\frac{\log T}{\Delta_i^2}\right)^{3/2}$

Conclusion (general feedback graph)

	Stochastic	Adversarial			
Wu et al. (2015)	$O(D \log T/\Delta^2)$				
Alon et al. (2015)		$O\left((D \log K)^{1/3}T^{2/3}\right)$			
Chen et al. (2021)		$O\left((\delta \log K)^{1/3}T^{2/3}\right)$			
Ours	$O(D ^2(\log T/\Delta^2)^{3/2})$	$O\left((D K^2)^{1/3}T^{2/3}\sqrt{\log T}\right)$			

Future work

	Stochastic	Adversarial
Wu et al. (2015)	$O(D \log T/\Delta^2)$	
Alon et al. (2015)		$O\left((D \log K)^{1/3}T^{2/3}\right)$
Chen et al. (2021)		$O\left((\delta \log K)^{1/3}T^{2/3}\right)$
Ours	$O(D ^2(\log T/\Delta^2)^{3/2})$	$O\left((D K^2)^{1/3}T^{2/3}\sqrt{\log T}\right)$
Ito et al. (2022)	$O(D \log^2 T/\Delta^2)$	$O(D^{1/3}T^{2/3}\log^{4/3}T)$
Future?		

Future work (strongly observable graph)

	Stochastic	Adversarial
Wu et al. (2015)	$O(\alpha \log T / \Delta)$ α is the independence number	
Alon et al. (2015)		$\tilde{O}(\sqrt{\alpha T})$
Erez et al., (2021) undirected graph with self-loops	$O(\theta \log^4 T/\Delta)$ $\theta \le \alpha$ is the clique covering number	$\tilde{O}(\sqrt{\theta T})$
Ito et al. (2022)	$O(\alpha \log^3 T/\Delta)$	$\tilde{O}(\sqrt{\alpha T})$
Rouyer et al. (2022) with self-loops	$O(\alpha \log^2 T/\Delta)$	$\tilde{O}(\sqrt{\alpha T})$
Future?		

References

- Alon, Noga, et al. "Online learning with feedback graphs: Beyond bandits." *Conference on Learning Theory*. PMLR, 2015.
- Wu, Yifan, András György, and Csaba Szepesvári. "Online learning with Gaussian payoffs and side observations." Advances in Neural Information Processing Systems 28 (2015).
- Chen, Houshuang, et al. "Understanding Bandits with Graph Feedback." Advances in Neural Information Processing Systems 34 (2021): 24659-24669.
- Rouyer, Chloé, et al. "A Near-Optimal Best-of-Both-Worlds Algorithm for Online Learning with Feedback Graphs." *arXiv preprint arXiv:2206.00557* (2022).
- Ito, Shinji, Taira Tsuchiya, and Junya Honda. "Nearly Optimal Best-of-Both-Worlds Algorithms for Online Learning with Feedback Graphs." *arXiv preprint arXiv:2206.00873* (2022).
- Erez, Liad, and Tomer Koren. "Best-of-all-worlds bounds for online learning with feedback graphs." *Advances in Neural Information Processing Systems* (2021).