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Outline

• Part 1: Two-sided matching markets 8:30-9:15
• Part 2: Multi-armed bandits 9:15-10:00
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• Part 3: Bandit algorithms in matching markets 10:30-11:30
• Part 4: Beyond matching markets 11:30-12:30
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Part 1: Two-sided Matching Markets 

Shuai Li, Fang Kong
Shanghai Jiao Tong University
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Matching markets

• Talent cultivation (school admissions, student internships)
• Task allocation (crowdsourcing assignments, domestic services)
• Resource distribution (housing allocation, organ donation allocation)

4
https://www.freepik.com; https://twitter.com/IslingtonBC/status/1623340900725272578

https://twitter.com/IslingtonBC/status/1623340900725272578


Workers Employers

𝐴!

𝐴"

𝐴#

𝐴$

𝐵!

𝐵"

𝐵#

𝐵$

Matching market has two sides

𝐴%
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𝐴!

𝐴"

𝐴#

𝐴$

𝐴%

Both sides have preferences over the other side
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𝐵!

𝐵"

𝐵#

𝐵$

Worker side

Based on 
payment or 
prior familiarity 
of the task

: 𝐵" > 𝐵# > 𝐵! > 𝐵$

: 𝐵! > 𝐵" > 𝐵# > 𝐵$

: 𝐵# > 𝐵! > 𝐵" > 𝐵$

: 𝐵! > 𝐵" > 𝐵# > 𝐵$

: 𝐵! > 𝐵" > 𝐵# > 𝐵$



𝐴!

𝐴"

𝐴#

𝐴$

𝐴%

Both sides have preferences over the other side
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𝐵!

𝐵"

𝐵#

𝐵$

: 𝐴! > 𝐴" > 𝐴# > 𝐴$ > 𝐴%

: 𝐴" > 𝐴! > 𝐴$ > 𝐴# > 𝐴%

: 𝐴# > 𝐴! > 𝐴" > 𝐴% > 𝐴$

: 𝐴$ > 𝐴% > 𝐴! > 𝐴" > 𝐴#

Employer side

Based on the 
skill levels of 
workers



A case study: Medical interns [Roth (1984)]  

• Hospital side
• Internship has relatively low cost

• Student side
• closely engage with clinical medicine through internships 

• Historical practice
• Medical schools first publish students’ grade ranking
• Then hospitals start signing internship agreements with students

• How to match? 
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Medical interns (cont.)

• Bad case
• Student 𝑠!
• Receives offer from ℎ" but knows he is on the waiting list of ℎ!
• Wishes to wait for ℎ!
• If 𝑠! is forced to accept ℎ" and then ℎ! sends an invitation?

• Hospital ℎ"
• Rejected by 𝑠! at the last moment
• Students on the waiting list have already accepted other offers

• Important to guarantee stability

ℎ!

ℎ"

𝑠!

𝑠"

9

ℎ! > ℎ"



Participants have no 
incentive to abandon their 
current partner, 

i.e., 

no blocking pair such that 
they both preferred to be 
matched with each other 
than their current partner

Stable matching

Alvin E. Roth and Lloyd S. Shapley jointly won the Nobel Prize in 2012 for their contributions to stable matching theory.

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

𝐵! > 𝐵" > 𝐵#

𝐵# > 𝐵" > 𝐵!

𝐴! > 𝐴# > 𝐴"

𝐴" > 𝐴! > 𝐴#

𝐴# > 𝐴" > 𝐴!

𝐵" > 𝐵! > 𝐵#
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Blocking pair 



May be more than one stable matchings

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

11𝑚! = 𝐴!, 𝐵! , 𝐴", 𝐵" , 𝐴&, 𝐵& 𝑚" = 𝐴!, 𝐵" , 𝐴", 𝐵! , 𝐴&, 𝐵&

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

𝐵! > 𝐵" > 𝐵#

𝐵# > 𝐵" > 𝐵!

𝐵" > 𝐵! > 𝐵# 𝐴! > 𝐴# > 𝐴"

𝐴" > 𝐴! > 𝐴#

𝐴# > 𝐴" > 𝐴!

𝐵! > 𝐵" > 𝐵#

𝐵# > 𝐵" > 𝐵!

𝐵" > 𝐵! > 𝐵# 𝐴! > 𝐴# > 𝐴"

𝐴" > 𝐴! > 𝐴#

𝐴# > 𝐴" > 𝐴!



Each agent on A-side is matched 
with the most preferred partner 
among all stable matchings

𝑚! = 𝐴!, 𝐵! , 𝐴", 𝐵" , 𝐴#, 𝐵#

A-side optimal stable matching1

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

1The existence is proved by Gale and Shapley (1962). 
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𝐵! > 𝐵" > 𝐵#

𝐵# > 𝐵" > 𝐵!

𝐵" > 𝐵! > 𝐵# 𝐴! > 𝐴# > 𝐴"

𝐴" > 𝐴! > 𝐴#

𝐴# > 𝐴" > 𝐴!



A-side pessimal stable matching

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

𝐵! > 𝐵" > 𝐵#

𝐵# > 𝐵" > 𝐵!

𝐵" > 𝐵! > 𝐵# 𝐴! > 𝐴# > 𝐴"

𝐴" > 𝐴! > 𝐴#

𝐴# > 𝐴" > 𝐴!
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Each agent on A-side is matched 
with the least preferred partner 
among all stable matchings

𝑚" = 𝐴!, 𝐵" , 𝐴", 𝐵! , 𝐴#, 𝐵#



𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

How to find a stable matching?

14

𝐵! > 𝐵" > 𝐵#

𝐵# > 𝐵" > 𝐵!

𝐵" > 𝐵! > 𝐵# 𝐴! > 𝐴# > 𝐴"

𝐴" > 𝐴! > 𝐴#

𝐴# > 𝐴" > 𝐴!

Gale-Shapley (GS) algorithm 
[Gale and Shapley (1962)]

Agents on one side independently 
propose to agents on the other side 
according to their preference 
ranking until no rejection happens

No rejection happens! 



Gale-Shapley (GS) algorithm: Case 2

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

𝐴" > 𝐴! > 𝐴#

𝐴" > 𝐴! > 𝐴#

𝐴" > 𝐴! > 𝐴#

𝐵" > 𝐵! > 𝐵#

𝐵" > 𝐵! > 𝐵#

𝐵" > 𝐵! > 𝐵#

15Step 1 Step 2 Step 3



GS properties: Stability

• The GS algorithm returns the stable matching

• Proof sketch
• Suppose there exists blocking pair (𝐴( , 𝐵)) such that
• 𝐴( prefers 𝐵' than its current partner 𝑚(
• 𝐵' prefers 𝐴( than its current partner 𝑚'

• For 𝐴(, it first proposes to 𝐵), but is rejected, then proposes to 𝑚(

• This means that 𝐵) must prefers 𝑚) than 𝐴(
• Contradiction! 

16

𝑚#

𝑚$

𝐵#

𝐵# > 𝑚$

𝐴$

𝐴$ > 𝑚#



GS properties: Time complexity

• Each B-side agent can reject each A-side agent at most once
• At least one rejection happens at each step before stop
• 𝑁 = # {proposing-side agents}, 𝐾 = # {acceptance-side agents}
•⟹ GS will stop in at most 𝑁𝐾 steps

17
The time complexity can be improved as 𝑁! if 𝑁 ≤ 𝐾 [Kong and Li, 2023, arXiv version]



GS properties: Optimality

• Who proposes matters
• Each proposing-side agent is happiest, matched with the most preferred partner 

among all stable matchings 
• Each acceptance-side agent is only matched with the least preferred partner 

among all stable matchings
• A-side optimal stable matching = B-side pessimal stable matching

18

𝐴!

𝐴"

𝐴%

𝐵!

𝐵"

𝐵%

𝐵" > 𝐵! > 𝐵%

𝐵% > 𝐵! > 𝐵"

𝐵! > 𝐵" > 𝐵% 𝐴" > 𝐴% > 𝐴!

𝐴! > 𝐴" > 𝐴%

𝐴% > 𝐴! > 𝐴"

A-side optimal
∥

B-side pessimal 

B-side optimal
∥

A-side pessimal 

𝐴!

𝐴"

𝐴%

𝐵!

𝐵"

𝐵%

𝐵" > 𝐵! > 𝐵%

𝐵% > 𝐵! > 𝐵"

𝐵! > 𝐵" > 𝐵% 𝐴" > 𝐴% > 𝐴!

𝐴! > 𝐴" > 𝐴%

𝐴% > 𝐴! > 𝐴"



GS properties: Strategic behavior

19

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

𝐵" > 𝐵! > 𝐵#

𝐵" > 𝐵! > 𝐵#

𝐵" > 𝐵! > 𝐵# 𝐴" > 𝐴! > 𝐴#

𝐴" > 𝐴! > 𝐴#

𝐴" > 𝐴! > 𝐴#

𝐴& is matched with the least preferred partner 𝐵&
Whether it is possible to match a better partner by misreporting? 

Strategy-proof: Each participant is 
optimal to be truthful

Deviating results in sub-optimal 
assignments



GS properties: Strategic behavior (cont.)

• GS is strategy-proof for the proposing side [DF (1981); Roth (1982)]
• Best for the proposing-side agents to report truthfully

• GS is not strategy-proof for the acceptance side

If 𝐵! reports truthfully:
Matching: {(𝐴!, 𝐵"), (𝐴", 𝐵!), (𝐴&, 𝐵&)}

If 𝐵! misreports preference 𝐴& > 𝐴! > 𝐴"
Matching1: {(𝐴!, 𝐵!), (𝐴", 𝐵&), (𝐴&, 𝐵!)}

𝐵!: 𝐴& > 𝐴",  better partner!

𝐴"

𝐴%

𝐵!

𝐵"

𝐵%

𝐵! > 𝐵" > 𝐵% 𝐴% > 𝐴" > 𝐴!

𝐴!

𝐵! > 𝐵% > 𝐵"

𝐵% > 𝐵! > 𝐵"

𝐴! > 𝐴" > 𝐴%

𝐴! > 𝐴" > 𝐴%
20

1Assume all of other agents report truthfully



Extension with sets: Many-to-one markets

• An agent may match more than one partner
• Applications
• An employer can hire a group of workers
• A school can admit multiple students

𝐴"

𝐴%

𝐵!

𝐵"

𝐵%

𝐵! > 𝐵" > 𝐵% 𝐴! > 𝐴" > 𝐴%

𝐴!

𝐵! > 𝐵" > 𝐵%

𝐵! > 𝐵" > 𝐵%

𝐴! > 𝐴" > 𝐴%

𝐴! > 𝐴" > 𝐴%
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Preferences over sets: Responsiveness

22

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

𝐴" > 𝐴! > 𝐴#
Capacity 𝐶" = 2

𝐴" > 𝐴! > 𝐴#

𝐴" > 𝐴! > 𝐴#

𝐵! > 𝐵" > 𝐵#

𝐵# > 𝐵" > 𝐵!

𝐵" > 𝐵! > 𝐵#

𝐴! 𝐴" 𝐴& 𝐴"

Set 1 Set 2

Group preferences are responsive to 
individual preferences: 

Set 1 > Set 2 ⟺𝐴! > 𝐴&

Common realization: 
• Each agent 𝐵' has a capacity 𝐶' and 

preferences over individual partners
• Accept top 𝐶' of them



Preferences over sets: Substitutability

• Agents have preferences over groups (instead of simply individuals)

23

𝐴! 𝐴" 𝐴& 𝐴! 𝐴"

Set 1 Set 2

• Regarding participants as substitutes over complementary: 
• Keeps accepting 𝐴" even if its colleague 𝐴& becomes unavailable

• Naturally holds under 
responsiveness
• One of the most generally known 

conditions to ensure the 
existence of a stable matching
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Agents’ preference rankings: 
𝐵!: {𝐴!, 𝐴"} > {𝐴!, 𝐴&} > {𝐴", 𝐴&} > {𝐴&} > {𝐴"} > {𝐴!}
𝐵": {𝐴&} > ∅
𝐵&: {𝐴&} > ∅

When 𝐵' is selected, it accepts the most preferred subset 
of agents proposing to 𝐵'

For example, for agent 𝐵":
If 𝐴& is in the proposing set, then 𝐵" accepts 𝐴&; 
Otherwise, 𝐵" accepts none of them

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"
𝐵! > 𝐵" > 𝐵#

𝐵! > 𝐵" > 𝐵#

𝐵! > 𝐵" > 𝐵#

Substitutable preferences: An example

𝐵#



Deferred acceptance (DA) for substitutability

The same 
properties as GS:
• Stability
• Time complexity
• Optimality
• Strategic 

behavior (When 
A-side propose)

[KC (1982); Roth 
(1984b); RS (1992)]

25

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"
𝐵! > 𝐵" > 𝐵#

𝐵! > 𝐵" > 𝐵#

𝐵! > 𝐵" > 𝐵#

𝐵#

• The extension of GS under substitutability

{𝐴", 𝐴!} > {𝐴", 𝐴#} > {𝐴!, 𝐴#}
> {𝐴#} > {𝐴!} > {𝐴"}

{𝐴#} > ∅

{𝐴#} > ∅

Step 1

𝐴!

𝐴"

𝐴#

𝐵!

𝐵"

𝐵#

Step 2



Summary of Part 1: Two-sided matching markets

• Introduction to matching markets
• Stable matching
• Gale-Shapley algorithm: Procedure and properties
• Stability
• Time complexity
• Optimality
• Strategic behavior

• Extension to many-to-one markets
• Responsiveness
• Substitutability
• Deferred-acceptance algorithm
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Can learn them from 
iterative interactions !

But agents usually have unknown 
preferences in practice

27



Part 2: Multi-armed Bandits

Shuai Li, Fang Kong
Shanghai Jiao Tong University
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What are bandits? [Lattimore and Szepesvári, 2020]

To accumulate as many rewards, which arm would you choose next?

Exploitation V.S. Exploration
29

Time 1 2 3 4 5 6 7 8 9 10

Arm 1 $1 $0 $1 $1 $0

Arm 2 $1 $0



Interactive machine learning 

30

Candidate actions

Learning agent

Feedback

Environment

(2) Choose action

(3) Generate feedback(4) Receive feedback

(5) Improve policy

(1) Faced with

Provide insights for agents in matching markets to learn their 
unknown preferences through iterative interactions



Applications

31

Recommendation systems
[Li et al., 2010]

SAT solvers
[Liang et al., 2016]

Advertisement placement
[Yu et al., 2016]

Key part of reinforcement learning
[Hu et al., 2018]

Monte-carlo Tree Search (MCTS) in AlphaGo
[Kocsis and Szepesvári, 2006; Silver et al., 2016]

Public health: COVID-19 border testing in Greece
[Bastani et al., 2021]



Multi-armed bandits (MAB)

• A player and 𝐾 arms
• Each arm 𝑎) has an unknown reward distribution 𝑃) with unknown 

mean 𝜇)

• In each round 𝑡 = 1,2, … :
• The agent selects an arm 𝐴4 ∈ {1,2, … , 𝐾}
• Observes reward 𝑋4∼𝑃5&

Assume 𝑃$ is supported on [0,1] 
32

𝜇" 𝜇! 𝜇%……

Items, products, movies, companies, …

CTR, preference value, …

Click information, satisfaction, …



Objective
• Maximize the expected cumulative reward in 𝑇 rounds

𝔼 6
-.!

/
𝑋- = 𝔼 6

-.!

/
𝜇0!

• Minimize the regret in 𝑇 rounds 
• Denote 𝑗∗ ∈ argmax' 𝜇' as the best arm

𝑅𝑒𝑔 𝑇 = 𝑇 D 𝜇'∗ − 𝔼 G
4:!

;
𝜇5&

33



Explore-then-commit (ETC) [Garivier et al., 2016] 

• There are 𝐾 = 2 arms (choices/plans/...) 
• Suppose
• 𝜇! > 𝜇"
• ∆ = 𝜇! − 𝜇"

• Explore-then-commit (ETC) algorithm
• Select each arm ℎ times
• Find the empirically best arm A
• Choose 𝐴4 = 𝐴 for all remaining rounds 

ℎ rounds 
for 𝑎"

ℎ rounds 
for 𝑎!

𝑇 − 2ℎ rounds 
for the better 

performed one

34

A/B testing



• Regret analysis:
𝑅𝑒𝑔 𝑇 = 𝑇 D 𝜇! − 𝔼 G

4:!

;
𝜇5&

= ℎ∆ + 𝑇 − 2ℎ D ∆ D ℙ �̂�! < �̂�"
= ℎ∆ + 𝑇 − 2ℎ D ∆ D ℙ �̂�" − 𝜇" − (�̂�!−𝜇!) > ∆

≤ ℎ∆ + 𝑇 D ∆ D exp −
ℎ∆"

4

≤ 𝑂
log 𝑇
∆

• 𝑅𝑒𝑔 𝑇 = Ω 𝑇∆ if ℎ = 100
• 𝑅𝑒𝑔 𝑇 = Ω 𝑇∆ if ℎ = 𝑇/10

Explore-then-commit (cont.)
ℎ rounds 

for 𝑎"
ℎ rounds 

for 𝑎!
𝑇 − 2ℎ rounds 
for the better 

performed one

Exploration Exploitation

35

Choose ℎ = &
∆!
log (∆!

&

Sample mean

Hoeffding’s inequality

require the knowledge of ∆
Only with the best choice of ℎ
the regret would be smallest



Upper confidence bound (UCB) [Auer et al., 2002] 

• With high probability ≥ 1 − 𝛿

𝜇' ∈ �̂�' −
log 1/𝛿
𝑇'

, �̂�' +
log 1/𝛿
𝑇'

• Optimism: Believe arms have higher rewards, encourage exploration
• The UCB value represents the reward estimates

• For each round 𝑡, select the arm

𝐴 𝑡 ∈ argmax)∈ 2 A𝜇) +
log 1/𝛿
𝑇)(𝑡)

36Exploitation Exploration

By Hoeffding’s inequality

Number of selections of 𝑎$

Upper confidence bound (UCB)

Sample mean



Upper confidence bound (UCB) (cont.)

• Assume arm 𝑎! is the best arm
• If sub-optimal arm 𝑎) is selected
• w/ high probability

𝜇! ≤ UCB! ≤ UCB' ≤ 𝜇' + 2
DEF !/H
;((4)

• ⟹ 2 DEF !/H
;((4)

≥ ∆': = 𝜇! − 𝜇'

• ⟹ 𝑇'(𝑡) ≤ 𝑂 DEF !/H
∆(
)

• By choosing 𝛿 = 1/𝑇, cumulative regret: 
𝑂 G

'K!

log 𝑇
∆'"

D ∆' = 𝑂 𝐾log 𝑇/∆
37

∆≔ min$)"∆$
Without knowing ∆

Can choose 𝛿 adaptive to time 𝑡



Improve ETC: Elimination [Audibert and Bubeck, 2010] 

• Use confidence bound idea to remove requirement of ∆ in ETC
• Recall that with high probability ≥ 1 − 𝛿
• 𝜇' ∈ �̂�' −

DEF !/H
;(

, �̂�' +
DEF !/H
;(

• Once LCB! > UCB" (disjoint confidence intervals)
• Believes arm 𝑎! has higher rewards

• Uniformly select all active arms
• Once an arm is determined to be sub-optimal (its UCB is smaller than 

someone’ LCB values)
• Delete it from the active set

𝑎!𝑎" 𝑎!𝑎" 𝑎!𝑎"𝑎!𝑎"

LCB! > UCB"

𝑎! 38

Arm 𝑎" Arm 𝑎!

LCB!

UCB!

LCB"

UCB"



Improve ETC: Elimination (cont.)

• Assume arm 𝑎! is the best arm
• If sub-optimal arm 𝑎) is selected
• w/ high probability

𝜇! − 2
log 1/𝛿
𝑇!(𝑡)

≤ LCB! ≤ UCB' ≤ 𝜇' + 2
log 1/𝛿
𝑇' 𝑡

• ⟹ ∆≤ 4 DEF !/H
RST ;+(4 ,;((4)}

• ⟹ 𝑇' (𝑡) ≤ 𝑂 DEF !/H
∆)

• By choosing 𝛿 = 1/𝑇, cumulative regret: 
𝑂 G

'K!

log 𝑇
∆'"

D ∆' = 𝑂 𝐾log 𝑇/∆
39

Uniform exploration

𝑎!𝑎" 𝑎!𝑎" 𝑎!𝑎"𝑎!𝑎"

LCB! > UCB"

𝑎!

Without knowing ∆



Thompson sampling (TS) [Agrawal and Goyal, 2013] 

• Assume each arm has prior Gaussian(0,1)
• Sample an estimate M𝜇) from the posterior distribution

M𝜇)~Gaussian A𝜇) ,
1

1 + 𝑇)(𝑡)

• Select the arm 𝐴 𝑡 ∈ argmax)∈ 2 M𝜇)

• Also have 𝑂 𝐾log 𝑇/∆ regret
• Usually outperforms UCB

40

UCB
Exploitation Exploration

TS



Lower bound [Lai and Robbins, 1985]

• An algorithm is consistent on class of bandits ℰ if 𝑅𝑒𝑔(𝑇) = 𝑜(𝑇) for 
all bandits in ℰ
• If the algorithm is consistent, then

lim inf
/→9

𝑅𝑒𝑔(𝑇)
log 𝑇

≥ Ω 6
):!

1
Δ)"
X Δ) = Ω 6

)

1
Δ)

• Intuition
• To distinguish sub-optimal arm 𝑎' from the optimal one, it needs to be 

observed Ω log 𝑇/Δ'" times
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Bandit learning in matching markets [Liu et al., 2020]

• 𝑁 players: 𝒩 = {𝑝!, 𝑝", … , 𝑝#}
• 𝐾 arms: 𝒦 = {𝑎!, 𝑎", … , 𝑎$}
• 𝑁 ≤ 𝐾 to ensure players can be matched
• 𝜇%,' > 0: (unknown) preference of player 𝑝% towards arm 𝑎'
• For each player 𝑝%

• {𝜇!,#}#∈[&] forms its preference ranking
• For simplicity, the preference values of any player are distinct

• For each round 𝑡:
• Player 𝑝! selects arm 𝐴!(𝑡)
• If 𝑝! is accepted by 𝐴!(𝑡): receive 𝑋!,(* ) 𝑡 with

𝔼 𝑋!,(*()) 𝑡 = 𝜇!,(*())
• If 𝑝! is rejected: receive 𝑋!,(*())(𝑡) = 0

Satisfaction over this matching experience

42

For simplicity, 
assume arms 
know their 
preferences

𝑝!

𝑝"

𝑝%

𝑎!

𝑎"

𝑎%

?

?

?

When would 𝑝+ be rejected? 



Conflict resolution: One-to-one setting

• Each arm 𝑎) has a preference ranking 𝜋)
• 𝜋)(𝑝(): the position of 𝑝( in the preference ranking of 𝑎)
• 𝜋) 𝑝( < 𝜋) 𝑝(" : 𝑎) prefers 𝑝( than 𝑝("

• At each round 𝑡, when multiple players select arm 𝑎)
• 𝑎) only accepts the most preferred one 𝑝( ∈ argmin=#":0#" - .?$𝜋) 𝑝("

and rejects others
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Objective

• Minimize the stable regret
• The player-optimal stable matching 

a𝑚 = 𝑖, a𝑚( : 𝑖 ∈ 𝑁
• The player-optimal stable regret of player 𝑝( is

𝑅𝑒𝑔( 𝑇 = 𝑇𝜇(, VW, − 𝔼 G
4:!

;

𝑋(,5, 4 (𝑡)

• The player-pessimal stable regret 𝑅𝑒𝑔( 𝑇
• Use the objective of the player-pessimal stable matching 𝑚

• Guarantee strategy-proofness
• Single player can not achieve 𝑂(𝑇) reward increase by deviating when others follow 

the algorithm
44



Challenge in matching markets

• Learning process: Other players will block observations
• Once the player selects an arm based on its exploration-exploitation (EE) 

strategy, this arm may reject the player due to others’ selections
• The individual player’s EE trade-off is interrupted

• Objective: Cannot maximize a single player’s utility
• Aim to find the optimal equilibrium of the market

45

𝑝$

𝑝$%

𝑎#
?

?

𝑝$! > 𝑝$

Round 𝑡

Observation on 
𝑎$ is blocked



How to control agents’ blockings?

• Centralized
• All participants submit their estimations to the platform
• The platform computes an assignment
• All players follow this assignment

• Decentralized
• Each player independently computes the target arm
• Necessary information to communicate: 

• common index of arms,  matching outcomes in each round, etc.
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Summary of Part 2: Multi-armed bandits

• Multi-armed bandits (MAB)
• Applications
• Explore-then-commit (ETC)
• Upper confidence bound (UCB)
• Successive elimination
• Thompson sampling (TS)
• Lower bound

• Bandit learning in matching markets
• Setting
• Challenge
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Part 3: Bandit Algorithms in Matching 
Markets 

Shuai Li, Fang Kong
Shanghai Jiao Tong University
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Outline

49

• Centralized algorithms
• ETC, UCB
• The failure of UCB

• Decentralized algorithms
• General markets
• Markets with unique stable matching
• Explore-then-GS (ETGS) strategies

• Lower bound
• Many-to-one markets
• Strategic behavior

• Adaptive ETGS
• Other variants



Warm up: Centralized ETC [Liu et al., 2020]

50

• Input: An exploration budget ℎ

• For round 𝑡 = 1,2, … ,
• 𝑡 < ℎ𝐾: 
• 𝐴( 𝑡 = 𝑎 4X( REYZ //No conflict
• Update the corresponding rewards

• 𝑡 = ℎ𝐾: 
• Receive the estimated rankings e𝜌(
• Using GS to compute the matching 𝑚 ≔ (𝑚()(∈[]] based on ( e𝜌()(∈[]]
• 𝐴( 𝑡 = 𝑚(

• 𝑡 > ℎ𝐾
• 𝐴( 𝑡 = 𝑚(

ℎ𝐾 rounds: explore 
all arms in a round-
robin manner 

Remaining rounds: 
Follow GS’s choice

𝑡 = ℎ𝐾Exploration Exploitation

GS with 
estimated 
ranking



Centralized ETC: Analysis
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• If any player can estimate their preference ranking accurately
• Then the GS algorithm can output the player-optimal stable matching 

• Define ∆(,','.= 𝜇(,' − 𝜇(,'.
• Further define ∆= min(,'K'.∆(,','.

• By choosing ℎ = _
∆) log 1 + ;]∆)

_ , all players can estimate their ranking well w.h.p.

• The player-optimal stable regret satisfies

𝑅𝑒𝑔( 𝑇 = 𝑂 ℎ𝐾 = 𝑂
𝐾log 𝑇
∆"

Remark: ∆ can be improved as the minimum gap between the player-optimal stable arm and the next preferred one among all players. 

Needs to know ∆

Larger than 0 due to distinct preferences



Centralized UCB [Liu et al., 2020]

• For round 𝑡 = 1,2, … ,
• Each player estimates a UCB ranking towards all arms 
• The GS platform returns an assignment 𝑚- under these UCB 

rankings
• Each player selects the assigned arm
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Centralized UCB: Analysis

• When is 𝑚- unstable? 
• Exists blocking pair (𝑝(, 𝑎'), 𝑝( is actually matched with 𝑎'.
• What causes this blocking pair to appear? 

• 𝑝( wrongly estimate UCB rankings: UCB(,' < UCB(,'.

• This scenario happens at most 𝑂(log 𝑇/∆") times

• Converge to the player-pessimal stable matching

𝑅𝑒𝑔( 𝑇 = 𝑂
𝑁𝐾log 𝑇
∆"
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𝑝$%

𝑎#%

𝑎#

𝑎# > 𝑎#!
𝑝$

𝑝$ > 𝑝$!

Do not require ∆, but can only 
achieve pessimal stable matching



Decentralized algorithms: UCB and TS

• Players select the arm based on the UCB ranking and TS estimates 
• Coordinate players’ selections to control conflicts

54

Regret type Regret bound Algorithm type References

Player-pessimal
stable matching 𝑂

𝑁,𝐾!log! 𝑇
𝜅-"∆!

UCB [Liu et al., 2021] 

TS [Kong et al., 2022]

𝑝$ w.p. 𝜆

w.p. 1 − 𝜆
Available arm set: 
𝑆+ 𝑡 = {arms that would accept 𝑝+ at 𝑡 − 1 given 
others selections}; the arm with the largest UCB/TS 
estimate in 𝑆+ 𝑡 →Exploration

Last-round choice 𝐴+ 𝑡 − 1 →Exploitation

Can successfully match the 
target arm w.p. 

𝜅 = (1 − 𝜆) 𝜆-."

𝐴+(𝑡)

Pessimal stable matching 
Exponentially large term



Unique stable matching

• When there is only one stable matching
• Player-optimal stable matching = Player-pessimal stable matching
• The blocking relationship becomes simpler
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Regret type Regret bound Uniqueness condition References

Unique stable 
matching 𝑂

𝑁𝐾log𝑇
∆!

Serial dictatorship [Sankararaman et al., 2021]

𝛼-reducible condition [Maheshwari et al., 2022]

Uniqueness consistency
（The most general) [Basu et al., 2021]

Remark: ∆ can be improved as the minimum gap between the player-optimal stable arm and the next preferred one among all players. 



Why UCB fails to achieve player-optimality?

• When 𝑝( lacks exploration on 𝑎!
with 𝑎! > 𝑎( > 𝑎" on UCB, GS 
outputs the matching!
(𝑝!, 𝑎"), (𝑝", 𝑎!), (𝑝(, 𝑎()
• 𝑝( fails to observe 𝑎!

• UCB vectors do not help on 
exploration here

• Not consistent with the principle 
of optimism in face of uncertainty

𝑝"

𝑝#

𝑎!

𝑎"

𝑎#

𝑎" > 𝑎! > 𝑎#

𝑎! > 𝑎" > 𝑎#

𝑎" > 𝑎# > 𝑎!

𝑝! > 𝑝# > 𝑝"

𝑝" > 𝑝! > 𝑝#

𝑝# > 𝑝" > 𝑝!

𝑝!

1. When 𝑝! and 𝑝" submit the correct rankings
56



• Exploration-Exploitation trade-off
• Exploitation goes though with correct rankings by following GS
• Require enough exploration to estimate the correct rankings

• The UCB ranking does not guarantee enough exploration
• Perhaps design manually?
• To avoid other players’ block: Coordinate selections in a round-robin way

57

How to balance EE in a more appropriate way?
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PhasedETC [Basu et al., 2021]

phase 1 phase 2 phase ℓ

….

….

T rounds

Phase length grows exponentially

Round-robin explore: 𝐾 ℓ/ GS + exploit: 2ℓ

Implementation: Exploration
For round 𝑡:

𝐴+ 𝑡 = 𝑎 12+ 345 %
//𝑝": 1 2 3 1 2 3 1 2 3
//𝑝!: 2 3 1 2 3 1 2 3 1
Update the estimated ranking 
based on the received rewards

Implementation: GS + exploitation
//Follow GS to find the matching with the estimated 
ranking 𝜌 based on the empirical mean 
Initialize 𝑠+ = 1 for each player 𝑝+
For round 𝑡:

𝐴+ 𝑡 = 𝑎6#$
If 𝑝+ is not matched, 𝑠+ = 𝑠+ + 1



• Exploration is enough ⟹ Estimated ranking is correct ⟹ In the 
corresponding phase: GS returns the player-optimal stable matching

• The player-optimal regret comes from exploration and exploitation
before estimating well

𝑅𝑒𝑔( 𝑇 = 𝑂 𝐾log!AB 𝑇 + 2
!
∆%

&/(

PhasedETC: Regret analysis
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T rounds

Enough exploration 
to learn preferences

Explore Explore Explore: 𝐾 ℓ/

GS + exploit GS + exploit GS + exploit: 2ℓ

Explore: 𝐾 (ℓ + 1)/

….

….

Exponentially large term



• Avoid unnecessary exploitation before estimating preferences well
• Only when all players estimate well, enter GS + exploit
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Explore-then-GS (ETGS) [Kong and Li, 2023]

phase 1 phase 2 phase ℓ

….

T rounds

Phase length grows exponentially

Round-robin explore: 2ℓ Communicate: 𝑂(1) GS + 
exploit

Communicate and 
find that all players 
estimate their 
preferences well



ETGS implementation: Communication

• At communication block: players determine whether all 
players estimate their preference rankings well

• For 𝑝(
• If there exists a ranking 𝜌( over arms such that
• The confidence intervals of all arms are disjoint

• Note: this estimated ranking is accurate w.h.p.

• How to communicate with others?

61
Remark: each player identifying the arms ranked in the first N+1 is enough to find the player-optimal stable matching.

Arm 𝑎" Arm 𝑎!

LCB!

UCB!

LCB"

UCB"

player 𝑝+7𝑠 preference values

Arm 𝑎#

LCB#

UCB#



ETGS implementation: Communication (cont.)

• Based on observed all players’ matching outcomes [KL, 2023]
• If 𝑝( has estimated well with ranking 𝜌(: select arm 𝑎(
• Else: Select nothing

At the communication round, if 𝑝( observes 
that all players have been matched: 

Then all players estimate their preference well
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Communication 
round

𝑝!

𝑝"

Player

𝑎!

𝑎"

Select
Estimate well

Select
Estimate well



ETGS implementation: Communication (cont.)

• Based on players’ own matching outcomes [Zhang et al., 2022]
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• Communicate based on every pair of players
• 𝑝( can transmit information {0,1} to 𝑝(. based on 𝑎' (𝑝(> 𝑝(.)
• In the corresponding round, 𝑝(. always selects 𝑎'
• If 𝑝( finished exploration, selects 𝑎'
• 𝑝(. is rejected, receives information 1

• Otherwise, 𝑝( do not select 𝑎'
• 𝑝(. is accepted, receive information 0

• If a player cannot receive others’ information (all arms prefer this 
player than others)
• The player can directly exploit the stable arm
• Others cannot block it

Communication 
round

𝑝!

𝑝"

Player

𝑎!
Select
Estimate well

Rejection means 
𝑝" estimated well

Always
select



ETGS: Regret analysis [Kong and Li, 2023]

• Exploration is enough ⟹ Estimated ranking is correct ⟹ All players enter 
the GS + exploit phase and find the player-optimal stable matching
• The player-optimal regret comes from exploration and communication

𝑅𝑒𝑔( 𝑇 = 𝑂
𝐾log 𝑇
∆"

+ log
𝐾log 𝑇
∆"

• What is the optimal regret that an algorithm can achieve? 

64
Remark: ∆ can be improved as the minimum gap between the first N+1 ranked arms among all players. 



Lower bound [Sankararaman et al., 2021]

• Optimally stable bandits
• All arms have the same preferences
• ⟹ Unique stable matching exists
• The stable arm of each player is its optimal arm

• For any player 𝑝(
• Its stable arm is 𝑎(
• 𝑎( prefers 𝑝!, 𝑝"……𝑝(m! than 𝑝(
• 𝑇(,': the number of times that 𝑝( selects 𝑎'

𝑅𝑒𝑔( 𝑇 ≥ max ∆(,(,'G
'K(

𝑇(,' , ∆(,RSTG
(.n(

𝑇(.,(
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The optimal arm 𝑎+ is occupied by a higher-priority player𝑝+ selects sub-optimal arm 𝑎$

The minimum regret that 𝑝+ may suffer at any round

𝑝!

𝑝"

𝑝%

𝑎!

𝑎"

𝑎%

𝑎" > 𝑎! > 𝑎%

𝑎% > 𝑎! > 𝑎"

𝑎! > 𝑎" > 𝑎% 𝑝! > 𝑝" > 𝑝%

𝑝! > 𝑝" > 𝑝%

𝑝! > 𝑝" > 𝑝%



Lower bound (cont.)

• How many times does 𝑝( select a sub-optimal arm 𝑎) ?
• To distinguish the sub-optimal arm 𝑎' from the optimal arm 𝑎(
• 𝑝( needs to observe this arm

Ω
log 𝑇
∆(,(,'" gmes

• 𝐾 sub-optimal arms cause regret
Ω G

'K(

log 𝑇
∆(,(,'" D ∆(,(,' = Ω

𝐾log 𝑇
∆
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𝑝!

𝑝"

𝑝%

𝑎!

𝑎"

𝑎%

𝑎" > 𝑎! > 𝑎%

𝑎% > 𝑎! > 𝑎"

𝑎! > 𝑎" > 𝑎% 𝑝! > 𝑝" > 𝑝%

𝑝! > 𝑝" > 𝑝%

𝑝! > 𝑝" > 𝑝%



Lower bound (cont.)

• How many times does 𝑎( is occupied by a higher-priority player 𝑝("?
• To distinguish the sub-optimal arm 𝑎( from the optimal arm 𝑎(.
• 𝑝(. needs to observe this arm

Ω
log 𝑇
∆(o,(o,(" gmes

• 𝑁 higher-priority players cause regret
Ω G

(.n(

log 𝑇
∆(.,(.,(
" D ∆(,RST = Ω

𝑁log 𝑇
∆"

• The stable regret satisfies
𝑅𝑒𝑔( 𝑇 ≥ Ω max j

𝑁log 𝑇
∆"

, k
𝐾log 𝑇
∆

67
Remark: ∆ can be improved as the minimum gap between the player-optimal stable arm and the next preferred one among all players. 

𝑝!

𝑝"

𝑝%

𝑎!

𝑎"

𝑎%

𝑎" > 𝑎! > 𝑎%

𝑎% > 𝑎! > 𝑎"

𝑎! > 𝑎" > 𝑎% 𝑝! > 𝑝" > 𝑝%

𝑝! > 𝑝" > 𝑝%

𝑝! > 𝑝" > 𝑝%



One-to-one markets: Results overview
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Regret type Regret Bound Communication type References

Player-optimal 𝑂
𝐾log𝑇
∆&

Centralized, known ∆
[Liu et al., 2020]

Player-pessimal

𝑂
𝑁𝐾log𝑇
∆&

Centralized

𝑂
𝑁'𝐾& log& 𝑇
𝜌(&∆&

Decentralized, observed matching 
outcomes

[Liu et al., 2021]

[Kong et al., 2022]

Unique 𝑂
𝑁𝐾log𝑇
∆&

Decentralized
[Sankararaman et al., 2021; Basu
et al., 2021; Maheshwari et al., 
2022]

Optimal stable bandits
(Unique) Ω

𝑁log 𝑇
∆&

Decentralized [Sankararaman et al., 2021]

Player-optimal

𝑂 𝐾log)*+ 𝑇 + 2
)
∆'

(/*
Decentralized [Basu et al., 2021]

𝑂
𝐾log𝑇
∆&

Decentralized, observed matching 
outcomes [Kong and Li, 2023]

Decentralized [Zhang et al., 2022]



How about many-to-one markets?   

• Responsiveness: 
• Each arm 𝑎' has preferences over individual players and a capacity 𝐶'
• Accept the most preferred 𝐶' players among those who propose to it
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𝑝"

𝑝%

𝑎!

𝑎"

𝑎%

𝑎! > 𝑎" > 𝑎% 𝑝! > 𝑝" > 𝑝%
𝐶! = 2

𝑝!

𝑎! > 𝑎" > 𝑎%

𝑎! > 𝑎" > 𝑎%

𝑝! > 𝑝" > 𝑝%

𝑝! > 𝑝" > 𝑝%

Extension of one-to-one algorithms 
Centralized ETC/UCB [Wang et al., 2022] 
Decentralized UCB [Wang et al., 2022]
ETGS [Kong and Li, 2024]

Results in the same regret upper bounds



Many-to-one markets: Substitutability

• Challenge: Arms may reject all applications, players fail to explore in a 
round-robin manner

• Idea: Determine which match to explore from the arm side
• From arm-proposal DA to design learning process 70

When 𝑝! or 𝑝" selects 𝑎", 𝑎" reject them

Neither 𝑝! nor 𝑝" can receive rewards and 
learn their unknown preferences over 𝑎"

𝑝!

𝑝"

𝑝%

𝑎!

𝑎"
𝑎" > 𝑎! > 𝑎%

𝑎" > 𝑎! > 𝑎%

𝑎" > 𝑎! > 𝑎%

𝑎%

{𝑝!, 𝑝"} > {𝑝!, 𝑝%} > {𝑝", 𝑝%}
> {𝑝%} > {𝑝"} > {𝑝!}

{𝑝%} > ∅

{𝑝%} > ∅



Substitutability: Algorithm [KL, 2024]

• First assume players know arms’ preferences1
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𝑎!

𝑎"

𝑎%

{𝑝!, 𝑝"} > {𝑝!, 𝑝%} > {𝑝", 𝑝%}
> {𝑝%} > {𝑝"} > {𝑝!}

{𝑝%} > ∅

{𝑝%} > ∅

Step 1 of arm-proposal DA Step 1 of the online algorithm

𝑝!

𝑝"

𝑝%

?

?

?

𝑎!, 𝑎!, ……

𝑎", 𝑎%, 𝑎", 𝑎%…… Identifies 𝑎" > 𝑎%

𝑎!, 𝑎!, ……

Enter the next step

1Could use 𝑂(𝑁𝐾!) rounds to learn each arm’s most preferred player set at the start of each step of arm-proposal DA.

All players 
determine which 

arm is optimal

𝑝!

𝑝"

𝑝%

?

?

?



Substitutability: Theoretical analysis
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• Arm-proposal DA produces the player-pessimal stable matching
• Each rejection requires 𝑂 log 𝑇/∆" rounds
• At most 𝑁𝐾 rejections happen

• The player-pessimal stable regret of each player 𝑝( satisfies

𝑅𝑒𝑔( 𝑇 ≤ 𝑂
𝑁𝐾log 𝑇
∆"

The first result for 
combinatorial preferences

Remark: ∆ can be improved as the minimum gap between the player-pessimal stable arm and other less-preferred arms among all players. 



Strategic behavior: One-to-one setting

• Can players improve their rewards by deviating from the algorithm?

• Warm up: Centralized ETC [Liu et al., 2020]
• At time 𝑡 = ℎ𝐾: players report the estimated preference ranking
• In other rounds: players have no freedom of choice
• Based on the property of GS

• Single player’s deviation cannot improve the matching results (obtain linear 
reward increase) 

• Is strategy-proof
• Also holds for the many-to-one setting with responsiveness [Wang et al., 2022]
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ℎ𝐾 rounds: explore 
all arms in a round-
robin manner 

Remaining rounds: 
Follow GS’s choice

𝑡 = ℎ𝐾Exploration Exploitation

GS with 
estimated 
ranking



Strategic behavior: Centralized UCB [Liu et al., 2020]

• At each round: players report their UCB rankings 
• Open: Not sure whether a single player’ deviation can obtain 𝑂(𝑇)

reward increase
• A weaker result
• A single player can not match a better arm than the optimal stable matching 

in 𝑂(𝑇) times (Note the regret is only guaranteed for the pessimal stable 
matching)
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Communicate

Strategic behavior: ETGS [KL, 2023; Zhang et al., 2022]

• If their exists a player whose stable arm is the least preferred one
• He can always report that he has not finished exploration
• All players fail to enter the exploitation phase
• This player: Always match better arms during exploration, 𝑂(𝑇) reward 

increase
• Other players: 𝑂 𝑇/𝐾 times match worse arms, 𝑂(𝑇) reward decrease
• Not strategy-proof!
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Explore Exploit

: Not finish exploration



Adaptive ETGS [Kong and Li, 2024]
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• Idea: Instead of starting GS + exploitation with all players’ agreement, integrating each 
player’s own learning process into GS steps

• Each player explores arms in a round-robin manner
• Once the player identifies the most preferred one, always exploits this arm
• If the exploited arm is occupied by a higher-priority player (the arm “rejects” the player)
• Enter the next step of GS (explore the next most preferred arm)

Explore Exploit

Depends on all players
ETGS

Depends on player itself
Explore Exploit Explore Exploit

Adaptive ETGS 

Rejected by the exploited arm



Adaptive ETGS: Strategic behavior
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Explore Exploit

Have identified the optimal arm. What to report?

How about reporting NOT?
• Equivalent to delayed entering GS in 

the offline setting
• Cannot change the final matching 

results

How about reporting a non-optimal arm?
• Equivalent to misreporting rankings in 

the offline GS
• Cannot improve the final matched 

partner

• Is strategy-proof: Single player can not obtain 𝑂(𝑇) reward increase (improve the 
final matched arm) by misreporting the exploration status

• Also can extend to many-to-one markets with responsiveness



Adaptive ETGS: Regret

78

• Arrangement of round-robin exploration under responsiveness
• 𝐶 ≔ ∑' 𝐶'
• In every 𝐶 rounds, each player can match each available arm once

• Each step of GS executes 𝑂(𝐶log 𝑇/∆") times
• At most 𝑁𝐾 steps 

• The player-optimal stable regret of each player 𝑝( satisfies

𝑅𝑒𝑔( 𝑇 ≤ 𝑂
𝑁𝐾𝐶log 𝑇

∆"

The coefficient 𝑁𝐾𝐶 can be improved as 𝑁min{𝑁,𝐾}𝐶 by using a tight time complexity of offline GS under responsiveness [Kong and Li, 2024]; 
∆ can be improved as the minimum preference gap between any arms that have higher ranking than the arm after the player-optimal stable one. 

When reduced to one-to-
one setting, the result is 
𝑂 𝑁!𝐾log 𝑇/∆!



Many-to-one markets: Results overview
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Setting Regret type Regret Bound Communication type References

Responsiveness

Player-optimal 𝑂
𝐾log𝑇
∆!

Centralized, known ∆

[Wang et al., 
2022]

Player-pessimal

𝑂
𝑁𝐾#log𝑇

∆!
Centralized

𝑂
𝑁,𝐾! log! 𝑇
𝜅-"∆!

Decentralized, observed matching 
outcomes

Player-optimal
𝑂

𝐾log𝑇
∆!

Decentralized, observed matching 
outcomes, 

𝑁 ≤ 𝐾 p min$𝐶$
[Kong and Li, 
2024]𝑂

𝑁min{𝑁, 𝐾}𝐶log 𝑇
∆!

Decentralized, observed matching 
outcomes

Substitutability Player-pessimal 𝑂
𝑁𝐾log𝑇
∆!

Decentralized, observed matching 
outcomes, known arms’ preferences



Other setting variants

• Contextual information [Li et al., 2022]
• Non-stationary preferences [Ghosh et al., 2022; Muthirayan et al., 2023]
• Two-sided unknown preferences [PD, 2023; PG, 2023] 
• Markov matching markets [Min et al., 2022]
• Multi-sided matching markets [Mordig et al., 2021]
• Money transfer [Jagadeesan et al., 2021]
• P2P: matching with budget [Sarkar, 2021]
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Summary of Part 3: Bandit algorithms in 
matching markets 
• Centralized algorithms

• ETC, UCB
• The failure of UCB

• Decentralized algorithms
• General markets
• Markets with unique stable matching
• Explore-then-GS (ETGS) strategies

• Lower bound
• Many-to-one markets
• Strategic behavior

• Adaptive ETGS
• Other variants
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Part 4: Beyond Matching Markets 

Shuai Li, Fang Kong
Shanghai Jiao Tong University
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Outline

• Multi-player bandits
• Example: Cognitive radio networks
• Centralized settings
• Decentralized settings

• Learning in auctions
• One seller and multiple buyers
• Multiple sellers and buyers
• Dynamic sellers and buyers
• ……

83



Multi-player bandits

• 𝑁 users (players) hope to use 𝐾 channels (arms) for transmission
• A single user repeatedly chooses among a choice of 𝐾 channels
• At each round 𝑡 = 1,2, …𝑇

• Each player 𝑝! selects an arm 𝐴!(𝑡)
• 𝑋!,#(𝑡): Information transmission quality, with unknown expectation 𝜇!,#
• If collied with other players, only receive reward 0

84
Darak, Sumit J., and Manjesh K. Hanawal. "Distributed Learning in Ad-Hoc Networks: A Multi-player Multi-armed Bandit Framework." arXiv preprint arXiv:2004.00367 (2020).

Cognitive radio networks 



Multi-player bandits: Objective

• A matching 𝑚 is a one-to-one function: 𝑁 → [𝐾]
• The expected utility of 𝑚:

𝑈 𝑚 ≔6
(
𝜇(,K#

• Objective: Minimize the collective regret

𝑅𝑒𝑔 𝑇 = 𝑇 X maxK𝑈 𝑚 − 𝔼 6
-.!

/
6

(
𝜇(,0# - (1 − 𝜂0# - 𝑡 )
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𝑝! 𝑝"

𝑝%

𝑝+ 𝑝,

𝑝-

𝑎! 𝑎"

𝑎%
𝑎+

𝑎,

𝑎-

Collision indicator: 
1 if collide; 0 otherwise

Final reward of player 𝑝+ at time 𝑡



Comparison: Multi-player V.S. Matching markets

• Collision
• Multi-player bandits: Players receive no reward
• Matching markets: Accepted player(s) receive the reward (based on arms’ 

preferences)

• Objective
• Multi-player bandits: Collective utilities
• Matching markets: Equilibrium state of the market
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Multi-player bandits: Settings

• Centralized setting:
• All players follow a central platform to avoid conflicts

• Decentralized setting:
• Different levels of observed information

• Pre-agreement
• Collision information
• Only observe the final reward
• ……
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Multi-player bandits: Centralized setting

• Homogeneous setting [Anantharam et al., 1987]:
• All players have the same preferences over arms
• The problem reduces to bandits with multiple plays [Komiyama et al., 2015]
• A single player selects 𝑁 over 𝐾 arms in each round

• Heterogeneous setting:
• Players have different preferences over arms
• The problem reduces to combinatorial bandits problem [Chen et al., 2013]:

• A single player and 𝑁𝐾 arms (original player-arm pairs)
• At each round: The player selects an action (a matching), and receives the corresponding 

reward
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Multi-player bandits: Decentralized setting

• Key point: avoid conflicts among players
• Based on pre-agreement: 
• Each player has a rank 𝑖 and aims to focus on the 𝑖-th best arm [Anandkumar et al., 

2010]
• Based on the collision information: 
• Musical chair [Rosenski et al., 2016]: 

• A player uniformly sample arms and focus on this arm until no collision
• After some time, with high probability, players focus on different arms

• Communication [Boursier et al., 2019]:
• Collision: receive 1; no collision: receive 0

• ……
• Without collision information [Bubeck et al., 2020; 2021]

• Other multi-agent interaction rules? 89



Example of auction: Online advertising

90

• A publisher (mechanism) has a set of 
advertising slots
• Assigns them to 𝑁 buyers
• When a slot is assigned to a buyer, its 

reward corresponds to the click-through-
rate (CTR) ...
• Buyers do not know their exact values 

towards an assignment

Buyer 1

Buyer 2

Buyer 𝑁

……

Slot 5

Slot 3 Slot 4Slot 1 Slot 2



Example of auction: platform-as-a-service
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service provider 

Customers

• The service provider (seller) serves 
multiple customers (buyer) using the 
same compute cluster 
• The seller chooses a service level  for 

each buyer, and charge them accordingly
• The buyer’s experience is affected by 

exogenous stochastic factors such as 
traffic, machine failures 
• Buyers do not know their values towards 

an assignment



Formulation: Repeated auction [Kandasamy et al., 2023]
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• 1 seller and 𝑁 buyers (players)
• The seller chooses an assignment 𝜔, charge a price 𝑃( to player 𝑖 ∈ [𝑁]
• For each assignment 𝜔
• Player 𝑖’s value is 𝑣((𝜔) (unknown)
• Seller’s value is 𝑣q(𝜔)

• In each round 𝑡:
• The seller chooses an assignment 𝜔(𝑡) and charge price 𝑃((𝑡)
• Player 𝑖 receives a reward 𝑋( 𝑡 with expectation 𝑣((𝜔4)

cost

profits, satisfaction, …



Repeated auction: Objective
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• Social welfare
𝑉 𝜔- = 𝑣N 𝜔- +∑( 𝑣( 𝜔-

• Optimal assignment 𝜔∗ ∈ argmaxP 𝑉 𝜔

• Minimize the social welfare regret

𝑅𝑒𝑔 𝑇 = 𝑇 X 𝑉 𝜔∗ − 𝔼 6
-.!

/
𝑉 𝜔-



Repeated auction: Objective (cont.)

• Players’ own utilities
• Given assignment 𝜔4 and price 𝑃((𝑡)
• The player 𝑖’s expected utility is 𝑢((𝑡) = 𝑣( 𝜔4 − 𝑝((𝑡)
• Cumulative utilities: ∑4 𝑢((𝑡)

• Truthfulness
• A single player cannot improve its cumulative utilities by deviating from the 

algorithm

• Individual rationality
• Do not charge a player more than her bid
• The cumulative utilities of any player is non-negative
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Multiple sellers: Double auctions

95

• 𝑁 buyers, 𝐾 sellers
• Single type of good

• Each buyer 𝑖 ∈ [𝑁] has a unknown valuation 𝐵(
• Each seller 𝑗 ∈ [𝐾] has a unknown valuation 𝑆)



Multiple sellers: Double auctions’ setting [Basu
and Sankararaman, 2023]

96

• In each round 𝑡:
• Each buyer 𝑖 submits bid 𝑏((𝑡), each seller 𝑗 submits bid 𝑠'(𝑡)
• The mechanism outputs: 

• Participants subsets 𝒫r 𝑡 , 𝒫s 𝑡 with the same size 𝐾 𝑡 ≤ min 𝑁,𝐾
• Trading price 𝑃 𝑡

• Participating buyer 𝑖 receives utility 𝑢( 𝑡 = 𝑋((𝑡) − 𝑃(𝑡)
• Participating seller 𝑗 receives utility 𝑢' 𝑡 = 𝑃 𝑡 − 𝑋'(𝑡)
• Here 𝑋((𝑡) is with expectation 𝐵(, 𝑋'(𝑡) is with expectation 𝑆'
• Other buyers and sellers receive utility 0



Multiple sellers: Double auctions’ objective
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• Social welfare
• Cumulative values of agents who hold the goods

∑(∈𝒫)(-)𝐵( + ∑)∈[2]∖𝒫*(-)𝑆)
• Minimize the social welfare regret
𝑅𝑒𝑔(𝑇)
= 𝑇 ∑(∈𝒫)∗𝐵( + ∑)∈[2]∖𝒫*∗𝑆) − 𝔼 ∑-.!/ ∑(∈𝒫)(-)𝐵( + ∑)∈[U]∖𝒫*(-)𝑆)

• Minimize the individual regret

𝑅𝑒𝑔V,((𝑇) = 𝑇 𝐵( − 𝑝∗ 𝕀 𝑖 ∈ 𝒫V∗ − 𝔼 ∑-:(∈𝒫)(-) 𝐵( − 𝑃(𝑡)

• Similar for the seller side

Optimal participating buyers Optimal participating sellers

Optimal trading price



Dynamic sellers and buyers [Cesa-Bianchi et al., 2020]

• At each time 𝑡, a seller and a buyer arrive and wish to trade some good
• The seller’s and buyer’s valuation 𝑆), 𝐵)

• Realizations of underlying values 𝑠),𝑏)
• The mechanism selects a price 𝑃)
• The trade occurs if and only if 𝑆) ≤ 𝑃) ≤ 𝐵)
• The learner gains a reward (𝐵)−𝑆))𝕀{𝑆) ≤ 𝑃) ≤ 𝐵)}
• Aim to selecting prices to minimize the regret

𝑅𝑒𝑔(𝑇) = max>𝔼 6
)?@

A

(𝐵)−𝑆))𝕀{𝑆) ≤ 𝑝 ≤ 𝐵)} −6
)?@

A

(𝐵)−𝑆))𝕀{𝑆) ≤ 𝑃) ≤ 𝐵)}
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Other variants

• Different auction scenarios
• Different trading mechanisms
• Different learning side
• The agent side
• The mechanism side

• ……
• [Gatti et al., 2012; Kakade et al., 2013; Babaioff et al., 2014; Babaioff

et al., 2015; Nazerzadeh et al., 2016; Weed et al., 2016; Nedelec et al., 
2019; ……] 
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Summary of Part 4: Beyond matching markets 

100

• Multi-player bandits
• Example: Cognitive radio networks
• Centralized settings
• Decentralized settings

• Learning in auctions
• One seller and multiple buyers
• Multiple sellers and buyers
• Dynamic sellers and buyers
• Other variants



Open problems: Matching markets

• Optimality
• Regret
• Strategic behavior
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Open problems: Regret

102

• What is the optimal regret in the one-to-one setting?

• Recall that to ensure players can be matched, all existing works assume 𝑁 ≤ 𝐾

Regret type Regret Bound Communication type References

Optimal stable bandits
(Unique stable matching) Ω 𝑁log𝑇/Δ" Decentralized [Sankararaman et al., 

2021]

Player-optimal stable 
matching

𝑂 𝐾log𝑇/∆" Decentralized [Kong and Li, 2023; 
Zhang et al., 2022]

Gap



Open problems: Regret (cont.)
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• What is the optimal regret in the many-to-one setting? 

Setting Regret type Regret Bound Communication type References

Responsiven
ess

Player-optimal stable 
matching 𝑂

𝐾log𝑇
∆"

Decentralized, known 
matching outcomes, 
𝑁 ≤ 𝐾 _ min#𝐶#

[Kong and 
Li, 2024]

Player-optimal stable 
matching 𝑂

𝑁min{𝑁, 𝐾}𝐶log𝑇
∆"

Decentralized, known 
matching outcomes

Substitutabili
ty

Player-pessimal stable 
matching 𝑂

𝑁𝐾log𝑇
∆"

Decentralized, known 
matching outcomes

Is the player-optimal stable 
matching achievable? 

What is the optimal regret 
under the responsiveness? 



Open problems: Regret & Strategic behavior
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• What is the optimal regret when guaranteeing strategy-proofness?

Regret type Regret Bound Strategy-proof References

Player-optimal stable 
matching 𝑂 𝐾log𝑇/∆" No [Kong and Li, 2023; 

Zhang et al., 2022]

Player-optimal stable 
matching

𝑂 𝑁"𝐾log𝑇/∆"
𝑂 𝑁"𝐶log𝑇/∆" responsiveness Yes [Kong and Li, 2024]



Open problems: Matching markets (cont.)

• How to generalize the setting and what is the optimal regret in these 
settings? 
• How to deal with two-sided unknown preferences? 
• Existing works assume arms have known preferences and use this to conduct 

coordination/communication. But arms may also have unknown preferences
• How to deal with players’ indifferent preferences? 
• Players may be indifferent over multiple arms

• How to utilize the contextual information to accelerate the learning efficiency?
• Agents’ features (gender, age, hometown)

• How to handle asynchronous agents? 
• Agents may enter the system at different times

……
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Open problems: Other mechanism design

106

• Optimality in existing settings
• What is the optimal social welfare regret, individual regret? 
• How to guarantee strategy-proofness while ensuring efficiency? 

• Model generalizations
• Relax the required assumptions/observation on agents’ rewards
• Consider other trading mechanisms to ensure the desired properties
• Consider other common auction scenarios



Thanks!
&

Questions? 

107Credit: Some images are from Flaticon.com
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